题目如下:
We have a set of items: the
i
-th item has valuevalues[i]
and labellabels[i]
.Then, we choose a subset
S
of these items, such that:
|S| <= num_wanted
- For every label
L
, the number of items inS
with labelL
is<= use_limit
.Return the largest possible sum of the subset
S
.
Example 1:
Input: values = [5,4,3,2,1], labels = [1,1,2,2,3],
num_wanted
= 3, use_limit = 1 Output: 9 Explanation: The subset chosen is the first, third, and fifth item.Example 2:
Input: values = [5,4,3,2,1], labels = [1,3,3,3,2],
num_wanted
= 3, use_limit = 2 Output: 12 Explanation: The subset chosen is the first, second, and third item.Example 3:
Input: values = [9,8,8,7,6], labels = [0,0,0,1,1],
num_wanted
= 3, use_limit = 1 Output: 16 Explanation: The subset chosen is the first and fourth item.Example 4:
Input: values = [9,8,8,7,6], labels = [0,0,0,1,1],
num_wanted
= 3, use_limit = 2 Output: 24 Explanation: The subset chosen is the first, second, and fourth item.
Note:
1 <= values.length == labels.length <= 20000
0 <= values[i], labels[i] <= 20000
1 <= num_wanted, use_limit <= values.length
解题思路:贪心算法。每次取values中的最大值,如果对应labels没有超过限制,那么表示最大值可取;否则继续判断次大值。
代码如下:
class Solution(object): def largestValsFromLabels(self, values, labels, num_wanted, use_limit): """ :type values: List[int] :type labels: List[int] :type num_wanted: int :type use_limit: int :rtype: int """ res = 0 def cmpf(v1,v2): if v1[0] - v2[0] != 0: return v2[0] - v1[0] return v2[1] - v1[1] val_list = sorted(zip(values,labels),cmp=cmpf) dic = {} inx = 0 while num_wanted > 0 and inx < len(val_list): v,l = val_list[inx] if l not in dic or dic[l] < use_limit: res += v dic[l] = dic.setdefault(l,0) + 1 num_wanted -= 1 inx += 1 return res