三角函数和解三角形的考向收集整理【三轮总结】

一、考查三角函数的基本变换

  • 此时最常用的公式为二倍角的正弦、余弦公式的逆用,辅助角公式,转化化归为正弦型\(f(x)=Asin(\omega x+\phi)+k\)
例1 已知函数$f(x)=2sinx\cdot cosx+2\sqrt{3}\cdot cos^2x-\sqrt{3}+1$ $f(x)=sin2x+\sqrt{3}(2cos^2x-1)+1$ $=sin2x+\sqrt{3}cos2x+1$ $=2sin(2x+\cfrac{\pi}{3})+1$ 解后反思: 1、熟练掌握这样的变形是非常必要的。 2、当然,此时还可能有一个变形方向,即转化为二次型。比如某个题目可以转化为$f(x)=(sinx-1)^2+2$,当然这样的变形后,下一步能考查的方向很窄。

二、考查三角函数的基本性质

  • 此时常常类比模板函数\(f(x)=sinx\)的性质求解正弦型\(f(x)=Asin(\omega x+\phi)+k\)的性质
例2 已知函数$f(x)=2sinx\cdot cosx+2\sqrt{3}\cdot cos^2x-\sqrt{3}+1=2sin(2x+\cfrac{\pi}{3})+1$ * 考向:求周期; 由$T=\cfrac{2\pi}{2}$,得到$T=\pi$ * 考向:求值域$(x\in R 或 x\in [-\cfrac{\pi}{3},\cfrac{\pi}{4}])$;最值(和最值点); 若$x\in R$,则 当$sin(2x+\cfrac{\pi}{3})=1$时,即$2x+\cfrac{\pi}{3}=2k\pi+\cfrac{\pi}{2}(k\in Z)$,即$x=k\pi+\cfrac{\pi}{12}(k\in Z)$时,$f(x)_{max}=2\times1+1=3$; 当$sin(2x+\cfrac{\pi}{3})=-1$时,即$2x+\cfrac{\pi}{3}=2k\pi-\cfrac{\pi}{2}(k\in Z)$,即$x=k\pi-\cfrac{5\pi}{12}(k\in Z)$时,$f(x)_{max}=2\times(-1)+1=-1$; 992978-20171214150143326-1504669722.png 若$x\in [-\cfrac{\pi}{3},\cfrac{\pi}{4}]$,则可得 $-\cfrac{2\pi}{3}\leq 2x\leq \cfrac{\pi}{2}$,则$-\cfrac{\pi}{3}\leq 2x+\cfrac{\pi}{3}\leq \cfrac{5\pi}{6}$, 故当$2x+\cfrac{\pi}{3}=-\cfrac{\pi}{3}$,即$x=-\cfrac{\pi}{3}$时,$f(x)_{min}=f(-\cfrac{\pi}{3})=2\times (-\cfrac{\sqrt{3}}{2})+1=-\sqrt{3}+1$; 故当$2x+\cfrac{\pi}{3}=\cfrac{\pi}{2}$,即$x=\cfrac{\pi}{12}$时,$f(x)_{max}=f(\cfrac{\pi}{12})=2\times 1+1=3$; * 考向:求函数$f(x)$对称轴方程和对称中心坐标; 令$2x+\cfrac{\pi}{3}=k\pi+\cfrac{\pi}{2}(k\in Z)$,得到$f(x)$对称轴方程为$x=\cfrac{k\pi}{2}+\cfrac{\pi}{12}(k\in Z)$; 令$2x+\cfrac{\pi}{3}=k\pi(k\in Z)$,得到$f(x)$的对称中心坐标为$(\cfrac{k\pi}{2}-\cfrac{\pi}{6},1)(k\in Z)$ * 考向:求奇偶性$\left(奇函数利用f(0)=0;偶函数利用f(0)=f(x)_{max}或f(x)_{min}\right)$ 比如,函数$g(x)=2sin(2x+\phi+\cfrac{\pi}{3})(\phi\in (0,\pi))$是偶函数,求$\phi$的值。 分析:由于函数$g(x)$是偶函数,则在$x=0$处必然取到最值, 故有$2\times 0+\phi+\cfrac{\pi}{3}=k\pi+\cfrac{\pi}{2}(k\in Z)$, 则$\phi=k\pi+\cfrac{\pi}{6}(k\in Z)$ 令$k=0$,则$\phi=\cfrac{\pi}{6}\in (0,\pi)$,满足题意,故所求$\phi=\cfrac{\pi}{6}$时,函数$g(x)$是偶函数。 解后反思: 1、当然,求值域还可能有这样的变形,即转化为二次型。 高考题(2017高考真题 理科全国卷2的第14题) 函数$f(x)=sin^2x+\sqrt{3}cosx-\cfrac{3}{4}(x\in[0,\cfrac{\pi}{2}])$的最大值为_______。 分析:由于$x\in[0,\cfrac{\pi}{2}]$,则$cosx\in [0,1]$, 令$cosx=t\in [0,1]$,$f(x)=1-cos^2x+\sqrt{3}cosx-\cfrac{3}{4}=1-t^2+\sqrt{3}t-\cfrac{3}{4}=-(t-\cfrac{\sqrt{3}}{2})^2+1=g(t)$, 故当$t=\cfrac{\sqrt{3}}{2}$时,$g(t)_{max}=f(x)_{max}=1$。

三、考查常用的三角变换和解三角形(求角或求边)

  • 此时最常用的公式有三角形中的诱导公式、正弦定理、余弦定理,方程理论
例3(2017高考真题 理科全国卷2的第17题) $\Delta ABC$ 的内角$A,B,C$的对边分别是$a,b,c$,已知$sin(A+C)=8sin^2\cfrac{B}{2}$。 (1)求$cosB$. 分析:$sin(A+C)=sinB=8\cdot \cfrac{1-cosB}{2}$,得到$sinB=4(1-cosB)$, 即$\sqrt{1-cos^2B}=4(1-cosB)$,平方得到$17cos^2B-32cosB+15=0$。 由十字相乘法得到 $(17cosB-15)(cosB-1)=0$, 得到$cosB=\cfrac{15}{17}$或$cosB=1(舍去)$,故$cosB=\cfrac{15}{17}$; (2)若$a+c=6$,$S_{\Delta ABC}=2$,求$b$. 分析:由$cosB=\cfrac{15}{17}$得到$sinB=\cfrac{8}{17}$, 由$S_{\Delta ABC}=\cfrac{1}{2}acsinB=2$得到,$ac=\cfrac{17}{2}$, 故$b^2=a^2+c^2-2accosB=(a+c)^2-2ac-2accosB=6^2-2\cdot \cfrac{17}{2}-2\cdot \cfrac{17}{2}\cdot\cfrac{15}{17}=4$, 故$b=2$。

四、考查常用的三角变换和三角函数的单调性

  • 此时最常用的公式为二倍角的正弦、余弦公式的逆用,辅助角公式,以及整体思想和赋值法;2018年首次出现和导数结合的题型。
例4(2016.天津高考) 已知函数$f(x)=4tanx\cdot sin(\cfrac{\pi}{2}-x)\cdot cos(x-\cfrac{\pi}{3})-\sqrt{3}$, 试讨论$f(x)$在区间$[-\cfrac{\pi}{4},\cfrac{\pi}{4}]$上的单调性。 解析:先将所给函数化简为正弦型或者余弦型, $f(x)=4tan\cdot cosx(cosx\cdot \cfrac{1}{2}+sinx\cdot \cfrac{\sqrt{3}}{2})-\sqrt{3}$ $=4sinx(cosx\cdot \cfrac{1}{2}+sinx\cdot \cfrac{\sqrt{3}}{2})-\sqrt{3}=2sinxcosx+2\sqrt{3}sin^2x-\sqrt{3}$ $=sin2x+\sqrt{3}(1-cos2x)-\sqrt{3}=sin2x-\sqrt{3}cos2x$ $=2sin(2x-\cfrac{\pi}{3})$ 法1:先求解函数在$x\in R$上的单调区间, 令$2k\pi-\cfrac{\pi}{2}\leq 2x-\cfrac{\pi}{3}\leq 2k\pi+\cfrac{\pi}{2}(k\in Z)$, 得到单调递增区间为$[k\pi-\cfrac{\pi}{12},k\pi+\cfrac{5\pi}{12}](k\in Z)$, 又因为$x\in [-\cfrac{\pi}{4},\cfrac{\pi}{4}]$ 然后给$k$赋值,令$k=0$, 得到函数在区间$[-\cfrac{\pi}{12},\cfrac{\pi}{4}]$上单调递增,在区间$[-\cfrac{\pi}{4},-\cfrac{\pi}{12}]$上单调递减。 992978-20171214123346951-354986024.png 法2:由$-\cfrac{\pi}{4}\leq x\leq \cfrac{\pi}{4}$,求得$-\cfrac{5\pi}{6}\leq 2x-\cfrac{\pi}{3}\leq \cfrac{\pi}{6}$, 结合横轴为$2x-\cfrac{\pi}{3}$的图像可知, 当$-\cfrac{5\pi}{6}\leq 2x-\cfrac{\pi}{3}\leq -\cfrac{\pi}{2}$时,求得函数在区间$[-\cfrac{\pi}{4},-\cfrac{\pi}{12}]$单调递减; 当$-\cfrac{\pi}{2}\leq 2x-\cfrac{\pi}{3}\leq \cfrac{\pi}{6}$时,求得函数在区间$[-\cfrac{\pi}{12},\cfrac{\pi}{4}]$单调递增; 例5+新考向【2018高考一卷第16题】
求$f(x)=2sinx+sin2x$的最小值。【最值和导数相结合的题型】
法1:$f'(x)=2cosx+2cos2x=2cosx+2(2cos^2x-1)$
$=4cos^2x+2cosx-2=(2cosx+2)(2cosx-1)$
$=4(cosx+1)(cosx-\cfrac{1}{2})$
注意到$cosx+1\ge 0$恒成立,故
令$f'(x)>0$得到,$cosx>\cfrac{1}{2}$,令$f'(x)<0$得到,$cosx 则$x\in [2k\pi-\cfrac{5\pi}{3},2k\pi-\cfrac{\pi}{3}](k\in Z)$时,函数$f(x)$单调递减;
$x\in [2k\pi-\cfrac{\pi}{3},2k\pi+\cfrac{\pi}{3}](k\in Z)$时,函数$f(x)$单调递增;
故当$x=2k\pi-\cfrac{\pi}{3}(k\in Z)$时,$f(x)_{min}=f(2k\pi-\cfrac{\pi}{3})=-\cfrac{3\sqrt{3}}{2}$。

五、考查三角形的周长和面积

  • 此时往往已经知道三角形的一条边和其对角,使用面积公式求面积,由余弦定理求得另外两边长之和,从而求得周长。
例6(2017$\cdot$全国卷I) 已知$\Delta ABC$的内角$A,B,C$的对边分别是$a,b,c$,$S_{\Delta ABC}=\cfrac{a^2}{3sinA}$; (1)求$sinBsinC$的值; (2)若$6cosBcosC=1$,$a=3$,求$\Delta ABC$的周长; 分析:(1)由$S_{\Delta ABC}=\cfrac{1}{2}acsinB=\cfrac{a^2}{3sinA}$, 变形得到$\cfrac{1}{2}csinB=\cfrac{a}{3sinA}$, 边化角,得到$\cfrac{1}{2}sinCsinB=\cfrac{sinA}{3sinA}$, 故$sinBsinC=\cfrac{2}{3}$。 (2)由于求三角形周长的题目,一般都会知道一条边和其对角,现在知道了边$a$,故猜想应该能求得$A$, 这样想,我们一般就会将条件作差而不是作商, 由$cosBcosC-sinBsinC=-\cfrac{1}{2}$, 即$cos(B+C)=-cosA=-\cfrac{1}{2}$,得到$A=\cfrac{\pi}{3}$; 由题意$\cfrac{1}{2}bcsinA=\cfrac{a^2}{3sinA}$,$a=3$ 得到$bc=8$; 再由余弦定理得到$a^2=b^2+c^2-2bccosA$, 得到$3^2=(b+c)^2-2bc-2bccosA$,即$b+c=\sqrt{33}$; 故周长为$3+\sqrt{33}$。

六、考查三角形的面积的最大值,或某一边的最小值

  • 此时往往可以利用均值不等式求最值或者利用三角函数求最值
例7【三轮模拟考试理科用题】 在$\Delta ABC$中,已知$4cos^2\cfrac{A}{2}-cos2(B+C)=\cfrac{7}{2},a=2$,则$\Delta ABC$的面积的最大值为________. 分析:由$cos2(B+C)=cos(2B+2C)=cos(2\pi-2A)=cos2A$, 将已知等式变形为$2\cdot 2cos^2\cfrac{A}{2}-cos2A=\cfrac{7}{2}$, 即$2(1+cosA)-cos2A=\cfrac{7}{2}$, 即$2(1+cosA)-(2cos^2A-1)=\cfrac{7}{2}$, 化简为$4cos^2A-4cosA+1=(2cosA-1)^2=0$, 解得$cosA=\cfrac{1}{2},A\in(0,\pi)$,故$A=\cfrac{\pi}{3}$, 到此题目转化为已知$A=\cfrac{\pi}{3},a=2$,求$\Delta ABC$的面积的最大值。 接下来有两个思路途径: 思路一:使用均值不等式,由余弦定理$a^2=b^2+c^2-2bccosA,A=\cfrac{\pi}{3},a=2$ 得到$b^2+c^2=4+bc\ge 2bc$,解得$bc\leq 4(当且仅当b=c=2时取到等号)$, 则$S_{\Delta ABC}=\cfrac{1}{2}bcsinA \leq \cfrac{\sqrt{3}}{4}\times 4=\sqrt{3}$。 即三角形面积的最大值是$\sqrt{3}$。 法2:由于题目已知$A=\cfrac{\pi}{3},a=2$,则$B+C=\cfrac{2\pi}{3}$,故$B,C\in (0,\cfrac{2\pi}{3})$, 则由正弦定理得$\cfrac{b}{sinB}=\cfrac{c}{sinC} =\cfrac{a}{sinA} =\cfrac{2}{\frac{\sqrt{3}}{2}} =\cfrac{4\sqrt{3}}{3}$, 则$b=\cfrac{4\sqrt{3}}{3}sinB$,$c=\cfrac{4\sqrt{3}}{3}sinC$, 则$bc=(\cfrac{4\sqrt{3}}{3})^2\cdot sinB\cdot sinC=\cfrac{16}{3}sinB\cdot sin(\cfrac{2\pi}{3}-B)$ $=\cfrac{16}{3}sinB\cdot (\cfrac{\sqrt{3}}{2}cosB+\cfrac{1}{2}sinB)$ $=\cfrac{16}{3}[\cfrac{\sqrt{3}}{2}sinB\cdot cosB+\cfrac{1}{2}sin^2B]$ $=\cfrac{16}{3}[\cfrac{\sqrt{3}}{4}sin2B+\cfrac{1}{4}(1-cos2B)]$ $=\cfrac{16}{3}(\cfrac{\sqrt{3}}{4}sin2B-\cfrac{1}{4}cos2B+\cfrac{1}{4})$ $=\cfrac{8}{3}(sin2B\cdot \cfrac{\sqrt{3}}{2}-cos2B\cdot \cfrac{1}{2})+\cfrac{4}{3}$ $=\cfrac{8}{3}sin(2B-\cfrac{\pi}{6})+\cfrac{4}{3}$ 当$2B-\cfrac{\pi}{6}=\cfrac{\pi}{2}$,即$B=\cfrac{5\pi}{12} \in(0,\cfrac{2\pi}{3})$时,$sin(2B-\cfrac{\pi}{6})=1$, 即$bc_{max}=\cfrac{8}{3}+\cfrac{4}{3}=4$ 故$[S_{\Delta}]_{max}=\cfrac{1}{2}bcsinA\leq \cfrac{\sqrt{3}}{4}\times 4=\sqrt{3}$。 解后反思:求某边的最小值,比如已知$ac=4$,$B=\cfrac{\pi}{3}$, 则$b^2=a^2+c^2-2accosB=a^2+c^2-ac\ge 2ac-ac=ac=4$,即$b^2\ge 4$,即$b_{min}=2$

七、考查三角形的周长的最大值

  • 此时常利用均值不等式或三角函数求最大值
例8【三角函数图像性质和解三角形结合】【2017•福州模拟】 在$\Delta ABC$中,角$A,B,C$的对边分别为$a,b,c$,满足$(2b-c)\cdot cosA=a\cdot cosC$。  (1)求角$A$的大小;(考查角度:解三角形) (2)若$a=3$,求$\Delta ABC$的周长的最大值。(考查角度:三角函数图像性质) 分析:(1)由$(2b-c)\cdot cosA=a\cdot cosC$及正弦定理,边化角得到, 得$(2sinB-sinC)cosA=sinAcosC$, 所以$2sinBcosA=sinCcosA+sinAcosC$, 所以$2sinBcosA=sin(C+A)=sinB$, 因为$B\in (0,π)$,所以$sinB\neq 0$, 因为$A\in (0,π)$,$cosA=\cfrac{1}{2}$,所以$A=\cfrac{\pi}{3} $。 (2)由(1)得$A=\cfrac{\pi}{3} $, 由正弦定理得$\cfrac{b}{sinB}=\cfrac{c}{sinC} =\cfrac{a}{sinA} =\cfrac{3}{\frac{\sqrt{3}}{2}} =2\sqrt{3}$, 所以$b=2\sqrt{3}\cdot sinB$; $c=2\sqrt{3}\cdot sinC$, $\Delta ABC$的周长:$l=3+2\sqrt{3}\cdot sinB+2\sqrt{3}\cdot sinC$ $=3+2\sqrt{3}\cdot sinB+2\sqrt{3}\cdot sin(\cfrac{2\pi}{3}-B)$ $=3+2\sqrt{3}\cdot sinB+2\sqrt{3}\cdot (\cfrac{\sqrt{3}}{2}cosB+\cfrac{1}{2}sinB)$ $=3+3\sqrt{3}sinB+3cosB=3+6sin(B+\cfrac{\pi}{6})$ 因为$B\in(0,\cfrac{2\pi}{3})$,所以当$B=\cfrac{\pi}{3}$ 时,$\Delta ABC$的周长取得最大值,最大值为9。

八、考查数学表达式的取值范围

  • 此时常利用三角函数求最大值
例9(2016宝鸡市第二次质量检测第17题) 在$\Delta ABC$中,已知$sin^2A+sin^2B+sinAsinB=sin^2C$,其中角$A、B、C$的对边分别为$a、b、c$, (1).求角$C$的大小。 (2).求$\cfrac{a+b}{c}$的取值范围。 分析:(1)角化边,由$\cfrac{a}{2R}=sinA,\cfrac{b}{2R}=sinB,\cfrac{c}{2R}=sinC$ 得到$a^2+b^2+ab=c^2$,即$a^2+b^2-c^2=-ab$, 故由余弦定理得到$cosC=\cfrac{a^2+b^2-c^2}{2ab}=-\cfrac{1}{2}$, 又$C\in (0,\pi)$,故$C=\cfrac{2\pi}{3}$。 (2)由(1)可知,$A+B=\cfrac{\pi}{3}$,即$A=\cfrac{\pi}{3}-B$ 边化角,由$a=2RsinA,b=2RsinB,c=2RsinC$ $\cfrac{a+b}{c}=\cfrac{sinA+sinB}{sinC}=\cfrac{2\sqrt{3}}{3}(sinA+sinB)$ $=\cfrac{2\sqrt{3}}{3}[sin(\cfrac{\pi}{3}-B)+sinB]=\cfrac{2\sqrt{3}}{3}[\cfrac{\sqrt{3}}{2}cosB-\cfrac{1}{2}sinB+sinB]$ $=\cfrac{2\sqrt{3}}{3}(\cfrac{1}{2}sinB+\cfrac{\sqrt{3}}{2}cosB)=\cfrac{2\sqrt{3}}{3}sin(B+\cfrac{\pi}{3})$, 又由$\begin{cases}B >0\\ \cfrac{\pi}{3}-B >0\end{cases}$得到$0< B 故$\cfrac{\pi}{3}< B+\cfrac{\pi}{3} 则$\cfrac{\sqrt{3}}{2} < sin(B+\cfrac{\pi}{3})\leq 1$ 则有$1 即$\cfrac{a+b}{c}$的取值范围为$(1,\cfrac{2\sqrt{3}}{3}]$。 引申:上述思路可以求解$msinB+nsinC$的取值范围($m、n$是实数)。 引申例9 在锐角三角形$ABC$中,$C=2B$,则$\cfrac{c}{b}$的取值范围是$(\sqrt{2},\sqrt{3})$ 分析:本题先将$\cfrac{c}{b}=\cfrac{sinC}{sinB}=2cosB$, 接下来的难点是求$B$的范围,注意列不等式的角度,锐角三角形的三个角都是锐角,要同时限制 由$\begin{cases}&0< A $\begin{cases} &0 < \pi-3B 解得$B \in (\cfrac{\pi}{6},\cfrac{\pi}{4})$,故$\cfrac{c}{b}=2cosB \in (\sqrt{2},\sqrt{3})$。 例10在锐角$\Delta ABC$中,内角$A、B、C$的对边分别是$a、b、c$,且满足$(a-b)(sinA+sinB)=(c-b)sinC$, 若$a=\sqrt{3}$,则$b^2+c^2$的取值范围是【】 $A.(3,6]$. $\hspace{4em}$ $B.(3,5)$. $\hspace{4em}$ $C.(5,6]$. $\hspace{4em}$ $D.[5,6]$. 分析:由已知和正弦定理可知, $(a-b)(a+b)=(c-b)c$,即$bc=b^2+c^2-a^2$, 故$cosA=\cfrac{1}{2}$,由$A\in (0,\pi)$,可知$A=\cfrac{\pi}{3}$。 则$B+C=\cfrac{2\pi}{3}$,又由于是锐角$\Delta ABC$, 则$\left\{\begin{array}{l}{0< B < \cfrac{\pi}{2}}\\{0 则得到$\cfrac{\pi}{6}< B < \cfrac{\pi}{2}$; 又$a=\sqrt{3}$,则$2R=\cfrac{a}{sinA}=2$, 所以$b^2+c^2=(2RsinB)^2+(2RsinC)^2$ $=(2R)^2(sin^2B+sin^2C)$ $=4(sin^2B+sin^2(\cfrac{2\pi}{3}-B))$ $=4[sin^2B+(\cfrac{\sqrt{3}}{2}cosB+\cfrac{1}{2}sinB)^2]$ $=4(sin^2B+\cfrac{3}{4}cos^2B+\cfrac{1}{4}sin^2B+2\cdot \cfrac{\sqrt{3}}{2}cosB\cdot \cfrac{1}{2}sinB)$ $=4(\cfrac{3}{4}+\cfrac{1}{2}sin^2B+\cfrac{\sqrt{3}}{4}sin2B)$ $=4[\cfrac{1}{4}(1-cos2B)+\cfrac{\sqrt{3}}{4}sin2B+\cfrac{3}{4}]$ $=\sqrt{3}sin2B-cos2B+4$ $=2sin(2B-\cfrac{\pi}{6})+4$, 由上可知,$\cfrac{\pi}{6}< B < \cfrac{\pi}{2}$, 则$\cfrac{\pi}{3}< 2B $\cfrac{\pi}{6}< 2B-\cfrac{\pi}{6} < \cfrac{5\pi}{6}$ 则$\cfrac{1}{2}< sin(2B-\cfrac{\pi}{6})\leq 1$ 则$5<2sin(2B-\cfrac{\pi}{6})+4\leq 6$,故选C。

九、考查三角函数和向量的融合

  • 此时常考查向量的坐标运算和三角变换,转化为正弦型后再考察其性质
例11【三角函数和解三角形和向量结合】 已知函数$f(x)=cosxsinx-\sqrt{3}cos^2x+\cfrac{\sqrt{3}}{2}$, (1)求函数$f(x)$的单调递增区间 分析:函数化简为$f(x)=sin(2x-\cfrac{\pi}{3})$,过程略,$[k\pi-\cfrac{\pi}{12},k\pi+\cfrac{5\pi}{12}](k\in Z)$ (2)在$\Delta ABC$中,$A$为锐角且$f(A)=\cfrac{\sqrt{3}}{2}$,$\overrightarrow{AB}+\overrightarrow{AC}=3\overrightarrow{AD}$,$AB=\sqrt{3}$,$AD=2$,求$sin\angle BAD$。 分析:由$f(A)=sin(2A-\cfrac{\pi}{3})=\cfrac{\sqrt{3}}{2}$, 解得$A=\cfrac{\pi}{3}$或$A=\cfrac{\pi}{2}$(舍去)。 992978-20190210205623381-1673082306.jpg 又由于$\overrightarrow{AB}+\overrightarrow{AC}=3\overrightarrow{AD}$, 如上图所示,$\overrightarrow{AB}+\overrightarrow{AC}=\overrightarrow{AE}=2\overrightarrow{AF}=2\cdot \cfrac{3}{2}\overrightarrow{AD}=3\overrightarrow{AD}$, 故点$D$为$\triangle ABC$的重心,以$AB$、$AC$为邻边做平行四边形$ABEC$, 由于$AD=2$,则$AE=6$, 在$\Delta ABE$中,$AB=3$,$\angle ABE=120^{\circ}$, 由正弦定理可得,$\cfrac{\sqrt{3}}{sin\angle AEB}=\cfrac{6}{\cfrac{\sqrt{3}}{2}}$, 可得$sin\angle AEB=\cfrac{1}{4}$ ,$cos\angle AEB=\cfrac{\sqrt{15}}{4}$, 故$sin\angle BAD=sin(\cfrac{\pi}{3}-\angle AEB)$ $=\cfrac{\sqrt{3}}{2}\times \cfrac{\sqrt{15}}{4}-\cfrac{1}{2}\times \cfrac{1}{4}=\cfrac{3\sqrt{5}-1}{8}$。 解后反思:利用已知的向量三角形,巧妙的构造了一个三角形,这样就能利用正弦定理和两角差的正弦公式求解了。

十、考查四边形的某条边的取值范围,动态变化

  • 将四边形动态变化为三角形,从而求解四边形的某条边的取值范围

例12【2015\(\cdot\)全国卷Ⅰ】

在平面四边形\(ABCD\)中,\(\angle A=\angle B=\angle C=75^{\circ}\)\(BC=2\),则\(AB\)的取值范围是___________。

分析:本题目非常特别,依据题意我们做出的图形是平面四边形,

当我们将边\(AD\)平行移动时,题目的已知条件都没有改变,故想到将此静态图变化为动态图,

平行移动\(AD\)时,我们看到了两个临界位置,即四边形变化为三角形的两个状态,

其一是四边形变化为三角形\(ABF\),此时应该有\(BF<AB\)

其二是四边形变化为三角形\(ABE\),此时应该有\(BE>AB\)

故动态的边\(AB\)的范围是\(BF<AB<BE\),从而求解。

解答:如图所示,延长\(BA\)\(CD\)交于\(E\),过\(C\)\(CF//AD\)\(AB\)\(F\),则\(BF<AB<BE\)

在等腰三角形\(CFB\)中,\(\angle FCB=30^{\circ}\)\(CF=BC=2\),由余弦定理得到\(BF=\sqrt{6}-\sqrt{2}\)

在等腰三角形\(ECB\)中,\(\angle CEB=30^{\circ}\)\(\angle ECB=75^{\circ}\)\(BE=CE,BC=2\)

由正弦定理得到\(BE=\sqrt{6}+\sqrt{2}\)

\(\sqrt{6}-\sqrt{2}<AB<\sqrt{6}+\sqrt{2}\)

解后反思引申:

1、求\(CD\)的取值范围;

分析:由上述的动态图可知,\(0<CD<CE=BE=\sqrt{6}+\sqrt{2}\)

2、求\(AD\)的取值范围;

分析:由上述的动态图可知,\(0<AD<CF=BC=2\)

3、求四边形\(ABCD\)的周长的取值范围;

分析:四边形\(ABCD\)的周长介于\(\Delta BCF\)的周长和\(\Delta BCE\)的周长之间,

故其取值范围是\((4+\sqrt{6}-\sqrt{2},2(\sqrt{6}+\sqrt{2})+2)\)

4、求四边形\(ABCD\)的面积的取值范围;

分析:四边形\(ABCD\)的面积介于\(\Delta BCF\)的面积和\(\Delta BCE\)的面积之间,

\(S_{\Delta BCF}=\cfrac{1}{2}\times 2\times 2\times sin30^{\circ}=1\)

\(S_{\Delta BCE}=\cfrac{1}{2}\times (\sqrt{6}+\sqrt{2})\times (\sqrt{6}+\sqrt{2})\times sin30^{\circ}=2+\sqrt{3}\)

故其取值范围是\((1,2+\sqrt{3})\)

十一、考查三角函数和恒成立命题的结合

  • 先将恒成立问题转化为最值,这样原问题就转化为三角函数的问题了
例13(宝鸡市二检文科理科第17题) 已知函数$f(x)=4sinxsin(x+\cfrac{\pi}{3})$,在$\Delta ABC$中,角$A、B、C$的对边分别是$a、b、c$, (1)、当$x\in [0,\cfrac{\pi}{2}]$时,求函数$f(x)$的取值范围。 分析:先将函数变形为正弦型函数$f(x)=2sin(2x-\cfrac{\pi}{6})+1$,其中$x\in [0,\cfrac{\pi}{2}]$, 题目转化为正弦型函数在限定区间上的值域问题,常规题目,$f(x)\in [0,3]$ (2)、若对任意的$x\in R$,都有$f(x)\leq f(A)$,$b=2$,$c=4$,点$D$是边$BC$的中点,求$AD$的长。 【解答的共有部分】对任意的$x\in R$,都有$f(x)\leq f(A)$,则$f(A)=f(x)_{max}$; $f(x)=2sin(2x-\cfrac{\pi}{6})+1,x\in R$,则$f(x)_{max}=3$, 即$f(A)=3$又$f(A)=2sin(2A-\cfrac{\pi}{6})+1$ 故有$=2sin(2A-\cfrac{\pi}{6})+1=3$,即$sin(2A-\cfrac{\pi}{6})=1$, 即$2A-\cfrac{\pi}{6}=\cfrac{\pi}{2}$,故$A=\cfrac{\pi}{3}$。 992978-20180322101714522-426934976.png 【法1】:余弦定理法,先由余弦定理得到$BC=2\sqrt{3}$,则$BD=CD=\sqrt{3}$, 设$\angle ADB=\alpha$,$\angle ADC=\beta$,则有$cos\alpha+cos\beta=0$。 再设$AD=x$,又$cos\alpha=\cfrac{x^2+(\sqrt{3})^2-4^2}{2\cdot\sqrt{3}\cdot x}$; $cos\beta=\cfrac{x^2+(\sqrt{3})^2-2^2}{2\cdot\sqrt{3}\cdot x}$; 代入方程$cos\alpha+cos\beta=0$得到,$x=AD=\sqrt{7}$。 【法2】:要求$AD$,由$AD=|\overrightarrow{AD}|$,而$|\overrightarrow{AD}|=\sqrt{\overrightarrow{AD}^2}$, $\overrightarrow{AD}=\cfrac{1}{2}(\overrightarrow{AB}+\overrightarrow{AC})$ 则$\overrightarrow{AD}^2=\cfrac{1}{4}(\overrightarrow{AB}+\overrightarrow{AC})^2$ 则$|\overrightarrow{AD}|^2=\cfrac{1}{4}(|\overrightarrow{AB}|^2+|\overrightarrow{AC}|^2+2|\overrightarrow{AB}||\overrightarrow{AC}|cos60^{\circ})$ $=\cfrac{1}{4}(4^2+2^2+2\times4\times2\times\cfrac{1}{2})=7$ 故$AD=|\overrightarrow{AD}|=\sqrt{7}$; 【法3】由题目可知,先由余弦定理得到$BC=2\sqrt{3}$,则由$AB=4,AC=2$, 可知$\Delta ABC$为$Rt\Delta$, 则有$AC=2$,$CD=\sqrt{3}$,故由勾股定理可知,$AD=\sqrt{7}$。 解后反思: 1、向量法和余弦定理法都是大家应该掌握的常见的思路方法, 其中向量法这个思路,对学生和老师而言,都不是那样的自如应用。

十二、考查解三角形的实际应用

  • 此时常先建立解三角形的数学模型,然后利用正余弦定理求解,需要注意立体问题平面化,不同三角形中的要素统一化到同一个三角形中。
例14 解三角形的实际应用

转载于:https://www.cnblogs.com/wanghai0666/p/8745638.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值