人工智能算法简介
人工算法是一种受自然界启发的搜索算法,其设计基于自然选择与群体遗传的机理。该算法通过模拟生物界中的繁殖、基因重组(杂交)以及基因突变等过程,实现了对复杂问题的高效求解。在这一过程中,人工算法不仅借鉴了生命进化的智慧,还融合了群体协作的优势,从而能够在庞大的解空间内有效地寻找最优解或近似最优解。
以如下问题为
在一个带权完全无向图中,找一个权值最小的哈密顿回路。即给定一组城市以及它们之间的距离,要求旅行商从某一城市出发,每个城市仅经过一次,最后回到原出发点,在所有可能的路径中求出路径长度最短的一条。 转化为数学语言描述:设G=(V,E)是一个带权图,其每一条边(u,v)∈E的费用(权)为正数w(u,v)。目的是要找出G的一条经过每个顶点一次且仅经过一次的回路,即哈密顿回路v1,v2,…,vn,使回路的总权值最小。
人工算法是一种基于自然选择和群体遗传机理的搜索算法,它模拟了自然选择和自然遗传过程中的繁殖、杂交和突变现象.再利用遗传算法求解问题时,我们将所走的路径作为“基因”,将途径城市的个数作为断点基因,以途径总路程作为目标函数来建立人工智能优化算法,考虑到题目是5个城市以及已知城市之间的距离以及人工智能算法算法对于相关参数有很强的敏感性。种群太小会导致多样性不足,陷入局部最优解;而设置过大会导致计算量大大增加,所以我们将遗传算法中的种群的个数M的数值设为20,显然,迭代数也是相关参数,过少会导致算法没有足够的时间收敛,反之则会导致计算资源浪费,因此将迭代次数设为100,参数设置如下:
利用人工智能优化算法求解
首先我们根据题目信息设置距离矩阵
为方便后续计算,我们先令每个城市的编号加1。
初始种群通过随机生成 M个个体构建,每个个体表示一条随机排列的城市路径。种群多样性通过随机初始化保证,为后续的进化过程提供丰富的搜索空间。适应度函数用于评估个体的优劣,本文定义适应度函数为路径总距离的倒数:
其中L(π)表示路径π的总距离。适应度值越高,个体越优。
其次采用轮盘赌选择法从当前种群中选择父代个体。选择概率与个体的适应度值成正比,适应度值越高的个体被选中的概率越大。具体步骤包括计算每个个体的适应度值、计算累积概率分布以及根据随机数选择个体。概率选择公式如下:
然后进行交叉操作采用两点交叉法生成子代个体。具体步骤包括随机选择两个父代个体、随机选择两个交叉点并交换父代个体的部分路径,最后修复子代个体中的重复城市,确保路径的合法性。
最后变异操作采用交换变异法增加种群多样性。具体步骤包括随机选择个体中的两个城市并交换它们的位置,最后修复路径中的重复城市。
算法通过迭代优化种群,逐步逼近最优解。每轮迭代包括计算当前种群的适应度值、进行选择、交叉和变异操作以生成新一代种群,以及更新全局最优解。重复上述过程,直到达到最大迭代次数或满足收敛条件。
人工智能算法实现
matlab代码
function main()
clear all; clc; close all;
%% 1. 参数初始化
D = [
0, 3, 1e6, 8, 9;
3, 0, 3, 10, 5;
1e6, 3, 0, 4, 3;
8, 10, 4, 0, 20;
9, 5, 3, 20, 0
];
N = size(D, 1); % 城市的个数
M = 20; % 种群的个数
C = 100; % 迭代次数
m = 2; % 适应值归一化淘汰加速指数
Pc = 0.5; % 交叉概率
Pmutation = 0.2; % 变异概率
%% 2.1 生成初始群体
popm = zeros(M, N);
for i = 1:M
popm(i, :) = randperm(N); % 将 N 序号随机打乱
end
%% 2.2 随机选择一个种群
R = popm(1, :);
%% 3. 初始化种群及其适应函数
fitness = zeros(M, 1);
len = zeros(M, 1);
for i = 1:M
len(i, 1) = myLength(D, popm(i, :));
end
maxlen = max(len);
minlen = min(len);
fitness = fit(len, m, maxlen, minlen);
fitness = fitness / sum(fitness);
distance_min = zeros(C + 1, 1); % 各次迭代的最小种群的距离
best_route = zeros(C + 1, N); % 各次迭代的最佳路径
%% 迭代过程
for iter = 1:C
fprintf('迭代第 %d 次\n', iter);
%% 选择操作
popm_sel = rouletteWheelSelection(popm, fitness, M);
%% 交叉操作
popm_sel = crossover(popm_sel, Pc);
%% 变异操作
popm_sel = mutation(popm_sel, Pmutation);
%% 求适应度函数
len = zeros(M, 1);
for i = 1:M
len(i, 1) = myLength(D, popm_sel(i, :));
end
maxlen = max(len);
minlen = min(len);
distance_min(iter + 1, 1) = minlen;
fitness = fit(len, m, maxlen, minlen);
fitness = fitness / sum(fitness);
% 更新种群
popm = popm_sel;
% 记录当前最佳路径
[~, bestIndex] = min(len);
best_route(iter + 1, :) = popm(bestIndex, :);
% 显示当前迭代的结果
fprintf('当前最短距离: %.2f\n', minlen);
fprintf('当前最佳路径: ');
disp(popm(bestIndex, :));
end
%% 输出最终结果
[~, bestIndex] = min(len);
R = popm(bestIndex, :);
disp('最终最佳路径:');
disp(R);
disp('最终最短距离:');
disp(minlen);
%% 绘制迭代过程
figure;
plot(0:C, distance_min, 'LineWidth', 2);
xlabel('迭代次数');
ylabel('最短距离');
title('迭代过程中最短距离的变化');
grid on;
end
%% 个体距离计算函数
function len = myLength(D, p)
len = 0;
for i = 1:length(p) - 1
len = len + D(p(i), p(i + 1));
end
len = len + D(p(end), p(1)); % 回到起点
end
%% 适应度函数
function fitness = fit(len, m, maxlen, minlen)
fitness = (1 - (len - minlen) ./ (maxlen - minlen + 0.0001)).^m;
end
%% 轮盘赌选择函数
function popm_sel = rouletteWheelSelection(popm, fitness, M)
cumulativeProbabilities = cumsum(fitness); % 累积概率分布
popm_sel = zeros(M, size(popm, 2));
for i = 1:M
r = rand() * cumulativeProbabilities(end);
idx = find(cumulativeProbabilities >= r, 1, 'first');
if isempty(idx)
idx = 1; % 默认选择第一个个体
end
popm_sel(i, :) = popm(idx, :);
end
end
%% 交叉操作函数
function popm_sel = crossover(popm_sel, Pc)
M = size(popm_sel, 1);
for i = 1:M
if rand() < Pc
j = randi([1, M]);
[popm_sel(i, :), popm_sel(j, :)] = crossoverTwoPoints(popm_sel(i, :), popm_sel(j, :));
end
end
end
%% 两点交叉函数
function [A, B] = crossoverTwoPoints(A, B)
L = length(A);
p1 = randi([1, L - 1]);
p2 = randi([p1, L]);
% 创建掩码
mask = false(1, L);
mask(p1:p2) = true;
% 交叉
A_new = A;
B_new = B;
A_new(mask) = B(mask);
B_new(mask) = A(mask);
% 修复重复城市
A_new = repairRoute(A_new);
B_new = repairRoute(B_new);
A = A_new;
B = B_new;
end
%% 修复重复城市的函数
function route = repairRoute(route)
% 找到重复的城市编号
[~, unique_indices] = unique(route, 'stable');
duplicate_indices = setdiff(1:length(route), unique_indices);
% 找到缺失的城市编号
missing_cities = setdiff(1:length(route), route(unique_indices));
% 用缺失的城市编号替换重复的城市编号
route(duplicate_indices) = missing_cities;
end
%% 变异操作函数
function popm_sel = mutation(popm_sel, Pmutation)
M = size(popm_sel, 1);
N = size(popm_sel, 2);
for i = 1:M
if rand() < Pmutation
idx1 = randi([1, N]);
idx2 = randi([1, N]);
% 交换两个城市
temp = popm_sel(i, idx1);
popm_sel(i, idx1) = popm_sel(i, idx2);
popm_sel(i, idx2) = temp;
% 修复重复城市
popm_sel(i, :) = repairRoute(popm_sel(i, :));
end
end
end
通过以上步骤运行得出结果如下:
人工智能优化算法运行效果图如上。
最短路经为4->3->5->2->1。每个城市编号减一,还原题中原本的城市编号。由此可知从起始点出发的最佳路径为0->3->2->4->1->0,最短距离为23。
对人工智能优化模型的分析:
随机生成初始种群,每个个体表示一条城市路径。然后计算每个个体的适应度值(路径总距离的倒数)作为适应度函数,再根据选择,交叉,变异等操作寻找最佳路线,最后进行迭代优化,重复以上操作达到最大迭代次数以避免局部最优的局限性。
在人工智能优化算法中,为保证运行结果的正确性,我们设置迭代次数为100。
得到如上显示迭代过程中的最短距离变化的图,从图中可知结果为最优解。
采用人工智能算法能够通过自然选择和遗传机制,在解空间中进行全局搜索,避免陷入局部最优解,高效地找到近似最优解。同时人工智能算法也具有鲁棒性,不依赖目标函数中的梯度信息以及对初始解的依赖性较低。
但是对于更大规模的问题,此算法消耗巨大也需要更多的迭代次数,除此之外此算法对于参数敏感性较大,参数设置不当会导致结果的不尽如人意。况且通常只能找到近似最优解,无法保证全局最优解
对人工智能算法模型的改进
为了进一步提升人工智能算法的性能并扩展其应用范围,可以从以下几个方面展开进行改进:
首先,开发自适应参数调整策略,以减少对人工调参的依赖。通过动态调整交叉概率、变异概率等关键参数,算法能够根据种群的进化状态自动优化搜索过程,从而提高算法的鲁棒性和收敛效率。
其次,结合局部搜索算法(如模拟退火、禁忌搜索)以提高搜索效率。通过将人工智能算法的全局搜索能力与局部搜索算法的精细优化能力相结合,可以在保持种群多样性的同时,加速对局部最优解的挖掘,从而提升整体求解质量。
最后,设计高效的约束处理机制,如罚函数法、修复算子等,以应对带有复杂约束条件的优化问题。通过将约束条件融入适应度函数或编码设计中,算法能够在满足约束的前提下,高效搜索可行解空间,从而扩展其应用场景。
通过以上改进方向,人工智能算法将能够在更广泛的领域中发挥其优势,为复杂优化问题的求解提供更加高效和可靠的解决方案。