例1(2017凤翔中学高三理科数学第二次月考第11题)
已知函数\(f(x)=\begin{cases}2^{|x|}+1,&x\leq 2\\-\cfrac{1}{2}x+6,&x>2\end{cases}\),若\(a,b,c\)互不相等,且满足\(f(a)=f(b)=f(c)\),则\(a+b+c\)的取值范围是【 】
A、\((5,6)\) \(\hspace{2cm}\) B、\((2,8)\) \(\hspace{2cm}\) C、\((1,10)\) \(\hspace{2cm}\) D、\((0,10)\)
分析:作出题目的函数图像,不妨设\(a < b < c\),
让水平直线从\(y=2\)变化到\(y=5\)这两个极限位置,
当\(y=2\)时,\(a+b+c=8\),
当\(y=5\)时,\(a+b+c=2\),
当然这两个极限位置都不能取到,故\(a+b+c\)的取值范围是\((2,8)\)。
反思:
1、本题目容易这样错解,由图像得到\(-2< a <0\),\(0< b <2\),\(2< c <8\);三个同向不等式相加得到\(0< a+b+c <10\),
错解原因:由于受条件\(f(a)=f(b)=f(c)\)的限制,\(a,b,c\)的取值是有关联的,故把它们先拆分再相加的解法是错的。
2、再比如我们知道\(-1\leq sin\theta\leq 1\),\(-1\leq cos\theta\leq 1\),但是不能得到\(-2\leq sin\theta+cos\theta\leq 2\),
而是变形得到\(sin\theta+cos\theta=sin(\theta+\cfrac{\pi}{4})\in[-\sqrt{2},\sqrt{2}]\)。
例2【2019凤翔中学高三理科数学资料用题】
已知函数\(f(x)=\begin{cases}|lgx|,&0<x\leq 10\\-\cfrac{1}{2}x+6,&x>10\end{cases}\),若\(a,b,c\)互不相等,且满足\(f(a)=f(b)=f(c)\),则\(abc\)的取值范围是【 】
A、\((1,10)\) \(\hspace{2cm}\) B、\((5,6)\) \(\hspace{2cm}\) C、\((10,12)\) \(\hspace{2cm}\) D、\((20,24)\)
分析:做出函数的大致图像,
不妨设\(a<b<c\),由题目\(f(a)=f(b)=f(c)\),
则\(|lga|=|lgb|\),即\(-lga=lgb\),即\(lga+lgb=0\),
故\(ab=1\),又由图可知,\(10<c<12\),
故\(abc\in (10,12)\)。
例3已知函数\(f(x)=\begin{cases}-4x^2+4x,&0\leq x<1\\log_{2013}\;x,&x>1\end{cases}\),若\(a,b,c\)互不相等,且满足\(f(a)=f(b)=f(c)\),则\(a+b+c\)的取值范围是【 】
A、\((2,2014)\) \(\hspace{2cm}\) B、\((2,2015)\) \(\hspace{2cm}\) C、\((3,2014)\) \(\hspace{2cm}\) D、\((3,2015)\)
分析:当\(0\leq x <1\)时,\(f(x)=-4(x-\cfrac{1}{2})^2+1\),
可得\(f(x)\in[0,1]\),当\(x >1\)时,\(f(x)=log_{2013}\;x>0\),
在同一个坐标系作出图像如图所示,不妨设\(a < b < c\),
则由二次函数的对称性可知$ a+b=1 $;
又由\(0< log_{2013}\;c <1\),解得\(1< c <2013\),
故\(2< a+b+c <2014\),选A。
例4(2017•聊城模拟)
若函数\(f(x)=\begin{cases}-2x,&x\leq 0\\-x^2+x,&x>0\end{cases}\),且关于\(x\)的方程\(f(x)=a\)恰有三个互不相等的实数根\(x_1,x_2,x_3\),则\(x_1x_2x_3\)的取值范围是【】
A、\((-\cfrac{1}{32},0)\) \(\hspace{2cm}\) B、\((-\cfrac{1}{16},0)\) \(\hspace{2cm}\) C、\((0,\cfrac{1}{32})\) \(\hspace{2cm}\) D、 \((0,\cfrac{1}{16})\)
分析:如图所示,当\(x >0\)时,\(f(x)=-x^2+x=-(x-\cfrac{1}{2})^2+\cfrac{1}{4}\leq \cfrac{1}{4}\),
当直线\(y=a\)和\(y=f(x)\)有三个交点时,\(0< a <\cfrac{1}{4}\),
不妨设\(x_1< x_2< x_3\),则由\(a=-2x_1\),可得\(x_1=-\cfrac{a}{2}\);
当\(\left\{\begin{array}{l}{-x_2^2+x_2=a}\\{-x_3^2+x_3=a}\end{array}\right.\)时,
则说明方程\(-x^2+x=a\),即方程\(x^2-x+a=0\)的两个根是\(x_2,x_3\),
故\(x_2x_3=a\),
则\(x_1x_2x_3=-\cfrac{a^2}{2}\in(-\cfrac{1}{32},0)\),故选A。
例5已知函数\(f(x)=\begin{cases}|2x+1|,&x<1\\log_2(x-m),&x>1\end{cases}\),若\(f(x_1)=f(x_2)=f(x_3)\)(\(x_1,x_2,x_3\)互不相等),
且\(x_1+x_2+x_3\)的取值范围为\((1,8)\),则实数\(m\)的值为__________
分析:做出函数图像如图所示,不妨设\(x_1 < x_2 < x_3\) ,
则由图可知,\(x_1+x_2=-1\),
又题目已知\(1< x_1+x_2+x_3 <8\),故\(2< x_3<9\),
上下平移图中的虚线可得,点\(A\)的坐标为\((9,3)\),
从而代入解析式得到,\(3=log_2(9-m)\),
解得m=1。
或者由\(2< x_3<9\)可知图像必过点\((2,0)\),
代入同样可解得\(m=1\)。
例6【2018广东中山期末】已知\(\cfrac{1}{3}\leq k<1\),函数\(f(x)=|2^x-1|-k\)的零点分别为\(x_1\)、\(x_2\),\((x_1<x_2)\),函数\(g(x)=|2^x-1|-\cfrac{k}{2k+1}\)的零点分别为\(x_3\)、\(x_4\),\((x_3<x_4)\),则\(x_4+x_2-(x_3+x_1)\)的最小值为【】
【法1】:函数\(f(x)\)的零点问题,转化为函数\(y=|2^x-1|\)与\(y=k\)的图像交点的横坐标问题,同理,函数\(g(x)\)的零点问题,转化为函数\(y=|2^x-1|\)与\(y=\cfrac{k}{2k+1}\)的图像交点的横坐标问题,
又由于\(y=\cfrac{k}{2k+1}=\cfrac{1}{2+\frac{1}{k}}\),在\(k\in [\cfrac{1}{3},1)\)上单调递增,即当\(k\)的取值从\(\cfrac{1}{3}\)增大到\(1\)时,\(\cfrac{k}{2k+1}\)的取值对应的从\(\cfrac{1}{5}\)增大到\(\cfrac{1}{3}\),
做出如下的图像,从图像入手分析,当\(y=k\)向上平移时,\(x_2-x_1\)逐渐增大,同理对应的\(x_4-x_3\)逐渐增大,所以要使得\(x_4+x_2-(x_3+x_1)\)取到最小值,则需要\(x_4-x_3\)和\(x_2-x_1\)同时取到最小值,此时\(k=\cfrac{1}{3}\),同时对应的有\(\cfrac{k}{2k+1}=\cfrac{1}{5}\);
此时,\(|2^{x_2}-1|=\cfrac{1}{3}\),即\(2^{x_2}-1=\cfrac{1}{3}\),解得\(x_2=log_2\cfrac{4}{3}\),又\(|2^{x_1}-1|=\cfrac{1}{3}\),即\(1-2^{x_1}=\cfrac{1}{3}\),解得\(x_1=log_2\cfrac{2}{3}\),
同理对应的有\(|2^{x_4}-1|=\cfrac{1}{5}\),即\(2^{x_4}-1=\cfrac{1}{5}\),解得\(x_4=log_2\cfrac{6}{5}\),又\(|2^{x_3}-1|=\cfrac{1}{5}\),即\(1-2^{x_3}=\cfrac{1}{5}\),解得\(x_3=log_2\cfrac{4}{5}\),
故此时\([x_4+x_2-(x_3+x_1)]_{min}=(log_2\cfrac{6}{5}-log_2\cfrac{4}{5})+(log_2\cfrac{4}{3}-log_2\cfrac{2}{3})=log_23\),故选\(B\)。
【法2】:由题可知,\(2^{x_2}-1=k\),\(1-2^{x_1}=k\),故有\(2^{x_2}=k+1\),\(2^{x_1}=1-k\),则\(2^{x_2-x_1}=\cfrac{1+k}{1-k}\);
同理,\(2^{x_4}=1+\cfrac{k}{2k+1}=\cfrac{3k+1}{2k+1}\),\(2^{x_3}=1-\cfrac{k}{2k+1}=\cfrac{k+1}{2k+1}\),则\(2^{x_4-x_3}=\cfrac{3k+1}{k+1}\);
则\(2^{x_4-x_3}\cdot 2^{x_2-x_1}=\cfrac{3k+1}{k+1}\cdot \cfrac{1+k}{1-k}=\cfrac{3k+1}{1-k}\),
又\(\cfrac{3k+1}{1-k}=\cfrac{-(-3k+3)+4}{1-k}=-3+\cfrac{4}{1-k}\),
由于\(\cfrac{1}{3}\leq k<1\),则\(0<1-k\leq \cfrac{2}{3}\),则\(\cfrac{4}{1-k}\ge 6\),则\(-3+\cfrac{4}{1-k}\ge 3\),
即\(2^{(x_4-x_3)+(x_2-x_1)}\ge 3\),则\((x_4-x_3)+(x_2-x_1)\ge log_23\),故选\(B\)。
解后反思:1、本题目还可以使用直接求解的方法,待后补充;比如\(2^{x_1}+2^{x_2}=2\);
则可以得到\(2\ge 2\cdot \sqrt{2^{x_1}\cdot 2^{x_2}}\);则\(\sqrt{2^{x_1+x_2}}\leq 1\),即\(2^{x_1+x_2}\leq 1\),则\(x_1+x_2\leq 0\);
2、比如将条件更改为\(\cfrac{1}{3}\leq k\leq \cfrac{4}{5}\),那么用相应的思路和方法,可以求解\(x_4+x_2-(x_3+x_1)\)的取值范围;