伯努利方程(压力与流量的关系)

伯努利方程揭示了流体在忽略粘性损失的流动中,压力势能、动能和位势能的总和保持不变。此原理在水力工程和流体测量中广泛应用,如计算小孔出流速度、毕托管测速以及文丘里管流量测量。不可压缩流体的伯努利方程包括压力、速度和位置水头之间的关系,可用于分析流体动力学中的各种问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

伯努利方程 
Bernoulli equation

流体宏观运动机械能守恒原理的数学表达式。1738年瑞士数学家D.伯努利在《水动力学──关于流体中力和运动的说明》中提出了这一方程。它可由理想流体运动方程(即欧拉方程)在定态流动条件下沿流线积分得出;也可由热力学第一定律导出。它是一维流动问题中的一个主要关系式,在分析不可压缩流体的定态流动时十分重要,常用于确定流动过程中速度和压力之间的相互关系。

方程的形式  对于不可压缩的理想流体,密度不随压力而变化,可得: 
clip_image001

式中Z为距离基准面的高度;p为静压力;u为流体速度;ρ为流体密度;g为重力加速度。方程中的每一项均为单位质量流体所具有的机械能,其单位为N·m/kg,式中左侧三项,依次称为位能项、静压能项和动能项。方程表明三种能量可以相互转换,但总和不变。当流体在水平管道中流动时Z不变,上式可简化为:

clip_image002
此式表述了流速与压力之间的关系:流速大处压力小,流速小处压力大。 
对于单位重量流体,取管道的12两截面为基准,
则方程的形式成为:

clip_image003
式中每一项均为单位重量流体的能量,具有长度的因次,三项依次称为位头、静压头和动压头(速度头)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值