[物理学与PDEs]第2章习题3 Laplace 方程的 Neumann 问题

本文深入探讨了在单连通区域内,满足给定向量场于边界上的Neumann问题的拉普拉斯方程解的存在性条件。通过引入速度场与数量场的关系,阐述了解的存在性依赖于边界积分条件的数学原理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

设 $\Omega$ 为单连通区域, 在其边界 $\vGa$ 上给定向量场 ${\bf u}_B$, 则在 $\bar\Omega$ 中存在速度场 ${\bf u}$, 使其在 $\Omega$ 中成立 $\Div{\bf u}=0$, 且该速度场有势, 即存在数量场 $\phi$ 使 ${\bf u}=-\n\phi$; 并在 $\vGa$ 上的法向分量 ${\bf u}\cdot{\bf n}={\bf u}_B\cdot{\bf n}$, 其充分必要条件为 $$\bex \int_\vGa {\bf u}_B\cdot{\bf n}\rd S=0, \eex$$ 其中 ${\bf n}$ 为单位外法线向量.

 

证明: Laplace 方程的 Neumann 问题 $$\bex \ba{rl} \lap\phi=0,&\quad\mbox{in }\Omega\\ \cfrac{\p\phi}{\p n}=-{\bf u}_B\cdot{\bf n},&\quad\mbox{on }\vGa \ea \eex$$ 有解的充分必要条件为 $$\bex 0=\int_\vGa \cfrac{\p\phi}{\p n}\rd S =-\int_\vGa {\bf u}_B\cdot{\bf n}\rd S. \eex$$

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值