LG1440 求 m 区间内的最小值

题目描述

一个含有 \(n\) 项的数列 (\(n≤ 2000000\)),求出每一项前的 \(m\) 个数到它这个区间内的最小值。若前面的数不足 \(m\) 项则从第 \(1\) 个数开始,若前面没有数则输出 \(0\)

输入输出格式

输入格式:

  • 第一行两个数 \(n\)\(m\)

  • 第二行,\(n\) 个正整数,为所给定的数列。

输出格式:

  • \(n\) 行,第 \(i\) 行的一个数 \(a_i\),为所求序列中第 \(i\) 个数前 \(m\) 个数的最小值。

输入输出样例

输入样例 #1:

6 2
7 8 1 4 3 2

输出样例 #1:

0
7
7
1
1
3 

数据规模

\(m ≤ n ≤ 2000000\)


原先看到标签 “RMQ”,就想用 RMQ(ST 表)写一写。显然不加滚动数组优化的 ST 表空间会爆炸(MLE,80)

/* P1440 求 m 区间内的最小值
 * Au: GG
 */
#include <cstdio>
#include <algorithm>
using namespace std;
const int N=2000005, logN=23;
int n, m, data[N], f[N][logN];

inline void ST() {
    for (int i=1; i<=n; i++) f[i][0]=data[i];
    for (int j=1; (1<<j)<=n; ++j)
        for (int i=1; i+(1<<j)-1<=n; ++i)
            f[i][j] = min(f[i][j-1], f[i+(1<<j-1)][j-1]);
}

inline int query(int l, int r) {
    int k=0;
    for (; (1<<k)<=(r-l+1); ++k); --k;
    return min(f[l][k], f[r-(1<<k)+1][k]);
}

int main() {
    scanf("%d%d", &n, &m);
    for (int i=1; i<=n; ++i) scanf("%d", &data[i]);
    ST(); printf("0\n%d\n", data[1]);
    for (int i=3; i<=n; ++i) printf("%d\n", query(max(i-m,1), i-1));
    return 0;
}

于是就有了滚动数组优化的 ST 表尝试:

/* P1440 求 m 区间内的最小值
 * Au: GG
 */
#include <cstdio>
#include <algorithm>
using namespace std;
const int N=2000005;
int n, m, data[N], f[N][2], now=2;

int main() {
    scanf("%d%d", &n, &m);
    for (int i=1; i<=n; ++i) scanf("%d", &data[i]);
    printf("0\n%d\n", data[1]);
    for (int i=1; i<=n; i++) f[i][0]=data[i];
    for (int j=1; (1<<j)<=m; ++j) {
        for (int i=1; i+(1<<j)-1<=n; ++i)
            f[i][j&1] = min(f[i][(j-1)&1], f[i+(1<<j-1)][(j-1)&1]);
        for (; now<(1<<j+1); ++now) {
            printf("%d\n", min(f[max(1,now-m+1)][j&1], f[now-(1<<j)+1][j&1]));
        }
    }
    int k=0;
    for (; (1<<k)<=m; ++k); --k;
    for (; now<n; ++now)
        printf("%d\n", min(f[max(1,now-m+1)][k&1], f[now-(1<<k)+1][k&1]));
    return 0;
}

可惜出现了我现在(August 2018)还搞不清楚的错误:“wrong answer Too long on line 2000001. 得分 0” (WA,70)

正确的做法是 单调队列:我们只需要维护 对头(最小值)元素,所以其他对答案无贡献的元素可以直接删去。维护队头、队尾,保证队头元素在 \([i-m+1, i]\) 范围内,队尾元素只要大于新添加的元素一律砍掉。为了保证队头元素的位置范围,队列里实际存储的是元素在源数据中的位置。(100)

/* P1440 求 m 区间内的最小值
 * Au: GG
 */
#include <cstdio>
const int N=2000005;
int n, m, a[N], q[N], l, r;

int main() {
    scanf("%d%d", &n, &m);
    for (int i=1; i<=n; ++i) scanf("%d", &a[i]);
    printf("0\n");
    for (int i=1; i<n; i++) {
        while (i-q[l]+1>m && l<r) ++l;
        while (a[q[r-1]]>=a[i] && l<r) --r;
        q[r++]=i;
        printf("%d\n", a[q[l]]);
    }
    return 0;
}

转载于:https://www.cnblogs.com/greyqz/p/9521630.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值