求三角形面积的最值

前言

面积公式

  • \(S=\cfrac{1}{2}\cdot a\cdot h_a\)

  • \(S=\cfrac{1}{2}absinC=\cfrac{1}{2}bcsinA=\cfrac{1}{2}casinB\)

  • \(S=\cfrac{1}{2}(a+b+c)\cdot r\),其中\(r\)为内切圆的半径;

  • \(S=\cfrac{abc}{4R}\),其中\(R\)为外接圆的半径;

  • \(S=\sqrt{p(p-a)(p-b)(p-c)}\),其中\(p=\cfrac{1}{2}(a+b+c)\),海伦公式;

二、典例剖析

例1【2019高三理科数学二轮用题】【2018福建三明一模】

已知在\(\triangle ABC\)中,\(\angle BAC\)的平分线交\(BC\)边于\(D\),若\(AB=2\)\(AC=1\),则\(\triangle ABD\)的面积的最大值为【】

$A、\cfrac{1}{2}$ $B、\cfrac{2}{3}$ $C、\cfrac{3}{4}$ $D、1\pi$

法1:由于\(AB:AC=2:1\),则由三角形的内角平分线定理可知\(BD:DC=2:1\)

992978-20190402131515351-1499959278.jpg

\(S_{\triangle ABD}=\cfrac{2}{3}S_{\triangle ABC}=\cfrac{2}{3}\times \cfrac{1}{2}\times 2\times1 \times sinA=\cfrac{2}{3}sinA\leq \cfrac{2}{3}\)

当且仅当\(sinA=1\)时,即\(\angle A=\cfrac{\pi}{2}\)时,\(S_{\triangle ABD}\)面积最大,为\(\cfrac{2}{3}\),故选\(B\)

法2:如下图所示,由于\(AB:AC=2:1\),则由三角形的内角平分线定理可知\(BD:DC=2:1\),令\(BD=2k\)\(DC=k(k>0)\)

992978-20190402131531165-683808270.jpg

\(cos\theta=\cfrac{2^2+(3k)^2-1^2}{2\times 2\times 3k}=\cfrac{3k^2-1}{4k}\),则\(sin\theta=\sqrt{1-(\cfrac{3k^2-1}{4k})^2}=\sqrt{\cfrac{-9k^4+10k^2-1}{16k^2}}\)

\(S_{\triangle ABD}=\cfrac{1}{2}\times 2\times 2k\times sin\theta=2\times \sqrt{k^2\times \cfrac{-9k^4+10k^2-1}{16k^2}}=2\sqrt{\cfrac{-9k^4+10k^2-1}{16}}\)

\(f(k)=-9k^4+10k^2-1\),则\(f'(k)=-36k^3+20k=-k(36k^2-20)\)

\(f'(k)=0\),得到\(k=0\)(舍去)或\(k=-\cfrac{\sqrt{5}}{3}\)(舍去),或\(k=\cfrac{\sqrt{5}}{3}\)

由穿根法得到其大致图像可知,\(f(k)\)在区间\((0,\cfrac{\sqrt{5}}{3})\)上单调递增,在区间\((\cfrac{\sqrt{5}}{3},+\infty)\)上单调递减,

\(f(k)_{max}=f(\cfrac{\sqrt{5}}{3})=\cfrac{16}{9}\),故面积的最大值为\(S_{\triangle ABD}=2\sqrt{\cfrac{-9k^4+10k^2-1}{16}}=2\sqrt{\cfrac{\frac{16}{9}}{16}}=\cfrac{2}{3}\).

故选\(B\)

法3:利用图形求解;

992978-20190402162245745-374264232.gif

说明:要求面积的最大值,则需要高度最大,如图所示,三角形的底边为\(AB=2\)为定值,则高度最大时,面积最大,由于\(AC=1\)为定值,相当于点\(C\)在半圆上运动,很显然当\(\angle A=\cfrac{\pi}{2}\)时,\(\triangle ABD\)的高\(h\)最大,由三角形相似可知,此时\(h=\cfrac{2}{3}\),故\(S_{\triangle ABD}=\cfrac{1}{2}\times 2\times \cfrac{2}{3}=\cfrac{2}{3}\),故选\(B\)

例2【2018高考新课标Ⅲ卷第6题】直线\(x+y+2=0\)分别与\(x\)轴,\(y\)轴交于\(A\)\(B\)两点,点\(P\)在圆\((x-2)^2+y^2=2\)上,则\(\triangle ABP\)面积的取值范围是【】

$A.[2,6]$ $B.[4,8]$ $C.[\sqrt{2},3\sqrt{2}]$ $D.[2\sqrt{2},3\sqrt{2}]$

法1:做出如下的图形,由图形可以看出,当圆上的动点到直线的距离最大时,\(\triangle ABP\)面积最大,当当圆上的动点到直线的距离最小时,\(\triangle ABP\)面积最小,



故三角形的高的最大值为\(2\sqrt{2}+r=2\sqrt{2}+\sqrt{2}=3\sqrt{2}\);三角形的高的最小值为\(2\sqrt{2}-r=2\sqrt{2}-\sqrt{2}=\sqrt{2}\);又\(|AB|=2\sqrt{2}\)

\([S_{\triangle ABP}]_{max}=\cfrac{1}{2}\times 3\sqrt{2}\times 2\sqrt{2}=6\)\([S_{\triangle ABP}]_{min}=\cfrac{1}{2}\times \sqrt{2}\times 2\sqrt{2}=2\),故选\(A\)

法2:设圆上任一点的坐标为\(P(2+\sqrt{2}cos\theta,\sqrt{2}sin\theta)\),则三角形的高为\(h=d=\cfrac{|2+\sqrt{2}cos\theta+\sqrt{2}sin\theta+2|}{\sqrt{2}}=\cfrac{|4+2sin(\theta+\cfrac{\pi}{4})|}{\sqrt{2}}\)

故当\(sin(\theta+\cfrac{\pi}{4})=1\)时,\(h_{max}=\cfrac{6}{\sqrt{2}}=3\sqrt{2}\)

\(sin(\theta+\cfrac{\pi}{4})=-1\)时,\(h_{min}=\cfrac{2}{\sqrt{2}}=\sqrt{2}\),又\(|AB|=2\sqrt{2}\)

\([S_{\triangle ABP}]_{max}=\cfrac{1}{2}\times 3\sqrt{2}\times 2\sqrt{2}=6\)\([S_{\triangle ABP}]_{min}=\cfrac{1}{2}\times \sqrt{2}\times 2\sqrt{2}=2\),故选\(A\)

例3【2019届高三理科数学三轮模拟训练题】已知抛物线\(C:y^2=4x\)的焦点为\(F\),过点\(M(4,0)\)的直线与抛物线\(C\)交于\(A\)\(B\)两点,则\(\triangle ABF\)的面积的最小值为【】

$A.8$ $B.12$ $C.16$ $D.24$

法1:做出如下的示意图,设直线\(AB\)的斜率为\(k\),不妨只考虑\(k>0\),则\(AB:y=k(x-4)\),即\(kx-y-4k=0\)

将直线和抛物线方程联立,消去\(x\)得到,\(ky^2-4y-16k=0\),则\(y_1+y_2=-\cfrac{-4}{k}=\cfrac{4}{k}\)\(y_1y_2=-16\)

\(|AB|=\sqrt{1+\cfrac{1}{k^2}}|y_1-y_2|=\sqrt{1+\cfrac{1}{k^2}}\sqrt{(y_1+y_2)^2-4y_1y_2}\)

\(=\sqrt{1+\cfrac{1}{k^2}}\sqrt{(\cfrac{4}{k})^2-4\times (-16)}=\sqrt{\cfrac{k^2+1}{k^2}}\cdot 4\cdot \sqrt{\cfrac{4k^2+1}{k^2}}\)

\(=4\cdot \cfrac{\sqrt{k^2+1}\cdot \sqrt{4k^2+1}}{k^2}\)

又点\(F\)到直线\(AB\)的距离为\(d=h=\cfrac{|3k|}{\sqrt{k^2+1}}=\cfrac{3k}{\sqrt{k^2+1}}\)

\(S_{\triangle ABF}=\cfrac{1}{2}\cdot 4\cdot \cfrac{\sqrt{k^2+1}\cdot \sqrt{4k^2+1}}{k^2}\cdot \cfrac{3k}{\sqrt{k^2+1}}\)

\(=6\times \cfrac{\sqrt{4k^2+1}}{k}=6\times \sqrt{4+\cfrac{1}{k^2}}\)

\(k\rightarrow \infty\)时,所求面积有最小值,\(S_{min}=6\times 2=12\)。故选\(B\).

法2:仿上利用均值不等式可以说明,当\(AB\)\(x\)轴垂直时,\(S_{\triangle ABF}\)有最小值;

\(S_{\triangle ABF}=\cfrac{1}{2}\cdot 3\cdot (|y_1|+|y_2|)\ge \cfrac{3}{2}\cdot 2\sqrt{|y_1y_2|}= \cfrac{3}{2}\cdot 2\cdot 4=12\),故选\(B\).

例4【2019届高三理科数学三轮模拟训练题】如果\(\triangle ABC\)内接于半径为\(R\)的圆,\(\triangle ABC\)的内角\(A\)\(B\)\(C\)的对边分别为\(a\)\(b\)\(c\),且\(asinA-csinC=(\sqrt{2}a-b)sinB\),若\(\triangle ABC\)的面积的最大值为\(2(\sqrt{2}-1)\),则\(R\)的值为【】

$A.1$ $B.\sqrt{2}$ $C.\sqrt{3}$ $D.2$

分析:边化角,由\(asinA-csinC=(\sqrt{2}a-b)sinB\)得到,\(a^2+b^2-c^2=\sqrt{2}ab\),则可知\(cosC=\cfrac{\sqrt{2}}{2}\),又\(C\in (0,\pi)\),则\(C=\cfrac{\pi}{4}\)

如图所示,弧\(AB\)所对的圆心角\(\angle C\)为定值,当其在圆上运动时,只有当其落在点\(D\)时面积最大(底边不动,高线最大),此时\(\triangle ABC\)为顶角为\(C=45^{\circ}\)的等腰三角形,\(\angle A=\angle B=\cfrac{135^{\circ}}{2}\)

则当\(a=b\)\([S_{\triangle ABC}]_{max}=\cfrac{1}{2}absinC=2(\sqrt{2}+1)\),解得\(a^2=8+4\sqrt{2}\)

992978-20190530104455847-1817742441.gif

则由\(\cfrac{a}{sinA}=2R\)得到,\(4R^2=\cfrac{a^2}{sin^2A}=\cfrac{a^2}{sin^2\frac{135^{\circ}}{2}}=\cfrac{8+4\sqrt{2}}{\frac{1}{2}(1+\frac{\sqrt{2}}{2})}=16\),则\(R=2\)。故选\(D\).

例12在\(\Delta ABC\)中,角\(A、B、C\)的对边分别为\(a、b、c\),若\(b=1\)\(a=2c\),则当\(C\)取最大值时,\(\Delta ABC\)的面积为【】

$A、\cfrac{\sqrt{3}}{3}$ $B、\cfrac{\sqrt{3}}{6}$ $C、\cfrac{2\sqrt{3}}{3}$ $D、\sqrt{3}$

分析:当\(C\)取到最大值时,\(cosC\)取得最小值,故先研究\(cosC\)

\(cosC=\cfrac{a^2+b^2-c^2}{2ab}=\cfrac{3c^2+1}{4c}\)

\(=\cfrac{1}{4}(3c+\cfrac{1}{c})\ge \cfrac{1}{4}\cdot 2\sqrt{3}=\cfrac{\sqrt{3}}{2}\)

当且仅当\(3c=\cfrac{1}{c}\),即\(c=\cfrac{\sqrt{3}}{3}\)时取得等号;

且此时\(sinC=\cfrac{1}{2}\),故当\(C\)取到最大值时,

\(S_{\Delta ABC}=\cfrac{1}{2}absinC=\cfrac{1}{2}\cdot 2c\cdot 1\cdot \cfrac{1}{2}=\cfrac{\sqrt{3}}{6}\),故选\(B\)

转载于:https://www.cnblogs.com/wanghai0666/p/10641994.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值