bzoj 3809 Gty的二逼妹子序列——莫队+分块

本文探讨了在处理大量修改和查询操作时,如何利用树状数组和分块技术优化算法效率。通过将值域分块并结合查询预处理,实现修改操作的常数时间复杂度和查询操作的对数时间复杂度,有效解决了nsqrt(n)个修改和m个查询的问题。
摘要由CSDN通过智能技术生成

题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3809

容易想到树状数组维护值域。但修改和查询都是 log 太慢。

考虑有 nsqrt(n) 个修改、m个查询,所以给查询 sqrt(n) ,给修改 O(1) 。对值域分块即可。(msqrt(n)也能过?)

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
const int N=1e5+5,M=1e6+5,K=320;
int n,m,a[N],base,bh[N],cnt[N],sm[K],ans[M];
struct Ques{
  int l,r,a,b,bh;
}q[M];
int rdn()
{
  int ret=0;bool fx=1;char ch=getchar();
  while(ch>'9'||ch<'0'){if(ch=='-')fx=0;ch=getchar();}
  while(ch>='0'&&ch<='9') ret=(ret<<3)+(ret<<1)+ch-'0',ch=getchar();
  return fx?ret:-ret;
}
bool cmp(Ques u,Ques v){return bh[u.l]==bh[v.l]?u.r<v.r:bh[u.l]<bh[v.l];}
void add(int x)
{
  if(!cnt[x])sm[bh[x]]++; cnt[x]++;
}
void del(int x)
{
  cnt[x]--; if(!cnt[x])sm[bh[x]]--;
}
int query(int l,int r)
{
  int ret=0;
  if(bh[r]-bh[l]<=1)
    {
      for(int i=l;i<=r;i++)if(cnt[i])ret++;
      return ret;
    }
  for(int i=bh[l]+1;i<bh[r];i++) ret+=sm[i];
  int L=base*bh[l],R=base*(bh[r]-1);
  for(int i=l;i<=L;i++)if(cnt[i])ret++;
  for(int i=R+1;i<=r;i++)if(cnt[i])ret++;
  return ret;
}
int main()
{
  n=rdn(); m=rdn(); base=sqrt(n);
  for(int i=1;i<=n;i++) a[i]=rdn(),bh[i]=(i-1)/base+1;
  for(int i=1;i<=m;i++)
    q[i].l=rdn(),q[i].r=rdn(),q[i].a=rdn(),q[i].b=rdn(),q[i].bh=i;
  sort(q+1,q+m+1,cmp);
  int L=0,R=0;
  for(int i=1;i<=m;i++)
    {
      int l=q[i].l,r=q[i].r;
      while(L>l)add(a[--L]);
      while(R<r)add(a[++R]);
      while(L<l)del(a[L++]);
      while(R>r)del(a[R--]);
      ans[q[i].bh]=query(q[i].a,q[i].b);
    }
  for(int i=1;i<=m;i++)printf("%d\n",ans[i]);
  return 0;
}

 

转载于:https://www.cnblogs.com/Narh/p/9745937.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值