最优化算法-斐波那契数列搜索

斐波那契数列搜索,参考Edwin《最优化导论》第四版7.3章节,算法采用go语言实现。

/*****************************************
 * FileName  : fibonacci_search.go
 * Author    : fredric
 * Date      : 2017.09.01
 * Note      : 斐波那契数列搜索算法
 * History   :
*****************************************/
package search 

import(
    "fmt"
)

func _get_fibonacci(i int) int{
    
    if i == 1 {
        return 1
    }else if i == 2{
        return 2
    }else{
        return _get_fibonacci(i - 1) + _get_fibonacci(i - 2)
    }
}

func _test_func(x float64) float64 {
    return x*x*x*x - 14*x*x*x + 60*x*x - 70*x
}

func _test_func_01(x float64) float64 {
    return (x - 1) * (x - 1)
}

/*
* 基于黄金分割的思路对分割的比例系数p进行优化
* p采用斐波那契数列,即
* p1 = 1 - FN/FN+1
* p2 = 1 - FN-1/FN
* ...
* PN = 1 - F1/F2
* 总的压缩比:p1*p2*..pN = 1/FN+1
* 因此 F N+1 需要能够满足压缩比
*/
func DoFibonnaciSearch(){

    fmt.Println("DoFibonnaciSearch")

    //最小区间为0.2
    //此时需要斐波那契的压缩比 1 + 2e/F N + 1 <= 最小区间长度/初始长度
    //取e是一个很小的整数,如0.05
    //则N等于第五次迭代可以满足要求

    a0 := 0.0
    b0 := 2.0
    p  := 0.0

    delta := 0.05 //最后一次增加一个小整数做偏移

    for i := 5; i >=1; i-- {

        if i != 1 {

            fmt.Printf("a0 = %f, b0 = %f \n", a0, b0)

            //获取斐波那契数列
            p1 := _get_fibonacci(i)
            p0 := _get_fibonacci(i - 1)

            p = 1 - float64(p0)/float64(p1)


            a1 := a0 + p * (b0 - a0)
            b1 := a0 + (1 - p) * (b0 - a0)

            f_a1 := _test_func_01(a1)
            f_b1 := _test_func_01(b1)

            if f_b1 > f_a1 {
                b0 = b1
            }else{
                a0 = a1
            }

            fmt.Printf("a1 = %f, b1 = %f f_a1 = %f, f_b1 = %f p = %f\n", a1, b1, f_a1, f_b1, p)

        }else{

            a1 := a0 + (1/2 - delta) * (b0 - a0)
            b1 := a0 + (1/2 - delta) * (b0 - a0)

            f_a1 := (a1 - 1) * (a1 - 1)
            f_b1 := (b1 - 1) * (b1 - 1)

            if f_b1 > f_a1 {
                b0 = b1
            }else{
                a0 = a1
            }
        }
    }//for i := 5; i >=1; i-- {

    fmt.Printf("a0 = %f, b0 = %f", a0, b0)
}

 

转载于:https://www.cnblogs.com/Fredric-2013/p/7531603.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值