- 博客(85)
- 资源 (1)
- 问答 (1)
- 收藏
- 关注
原创 机器学习技术(十)——决策树算法实操,基于运营商过往数据对用户离网情况进行预测
基于python的决策树模型的实现及调用。基于运营商过往数据,采用决策树算法,对用户离网情况进行预测。
2023-09-15 22:37:17 885 1
原创 机器学习技术(九)——支持向量机算法实操(基于SVM的模型对潜在运营商客户进行分类)
主要包含基于python的SVM的代码实现及调用。基于SVM的模型探索该运营商用户业务类型以及每月使用数据来区分是否为给运营商潜在合约用户。
2023-09-13 13:35:25 855
原创 机器学习技术(八)——朴素贝叶斯算法实操
通过基于朴素贝叶斯方法探索通过犯罪时间,星期几以及区域来判断犯罪类型,并选择不同特征进行两次建模与逻辑回归方法进行关于建模时间以及在测试集上表现的比较,发现面对相同数据集,朴素贝叶斯方法效率更高
2023-09-13 12:24:11 493
原创 机器学习技术(七)——有监督学习之逻辑回归算法原理及实操
详细介绍逻辑回归算法原理,基于python的逻辑回归的底层代码实现及调用。基于逻辑回归的模型探索被调查人员年龄,估计工资以及是否会购买某产品的关系,并将预测结果进行可视化。
2023-09-01 23:25:39 1090 4
原创 机器学习技术(六)——有监督学习算法之线性回归算法实操
通过基于线性回归模型对1960-2010年的年份对全球气温以及二氧化碳排放量的线性关系进行建模以及探索,一共51个数数据点,通过对这51个样本的分析得出两者的线性关系预测。
2023-08-30 22:29:51 1118 1
原创 深度学习卷积神经网络识别光学字符验证码,及captcha使用简单案例
验证码识别,本身使用来判断访问网站的用户是不是一个真人,但是随着人工智能的发展,尤其是深度卷积神经网络的发展,使得验证码识别机器还是人的底线再被层层攻破,本实验所使用的captcha 可以生成语音和图片验证码,验证码是由数字、大写字母、小写字母组成,可以自动生成验证码,
2023-08-29 09:37:31 421
原创 机器学习技术(五)——特征工程与模型评估
包含关于几个评估模型指标的参数计算及其原理。在日常业务有中,当我们训练模型时常常需要在多个模型中选择出最优模型,因此本实验中precision, recall rate等参数就成为评判的依据,帮助我们选择和评价模型表现。
2023-07-12 08:20:55 820
原创 机器学习技术(四)——特征工程与模型评估
机器学习技术(四)包含了十二种特征工程的应用方法,主要包括标准化,特征缩放,缩放有离群的值的数据,非线性转换,样本归一化,特征二值化,one-hot编码,缺失值插补以及生成多项式特征等步骤。包含关于几个评估模型指标的参数计算及其原理。在日常业务有中,当我们训练模型时常常需要在多个模型中选择出最优模型,因此本实验中precision, recall rate等参数就成为评判的依据,帮助我们选择和评价模型表现。
2023-07-11 20:45:30 576 1
原创 机器学习技术(三)——机器学习实践案例总体流程
前面学习了一些基础知识,但还没有步入机器学习算法。通过两个案例,来掌握机器学习模型的训练与评估、机器学习模型搭建的总体流程以及特征处理、决策树模型、交叉检验、网格搜索等常用数据挖掘方法的知识。
2023-07-05 14:57:42 2088
原创 机器学习技术(二)——Python科学运算模块(Numpy、Pandas)
对一些数据处理方法有所了解,在以后对机器学习实验中与处理数据以及底层代码实现打下基础。
2023-07-03 18:02:20 1492
原创 机器学习技术(一)——python基础超详解
本文系统性地介绍了python一些基本命令,数据类型,循环以及函数的定义等,并相应给了一些例子,通过完成这些小例子能够较好地巩固python基础并为以后的学习做铺垫。
2023-06-29 11:32:14 735 2
原创 streamlit——搭建学生评分网站(告别问卷星)
当需要对班级内多人进行打分时,为了不使用问卷星等平台进行评分,使用pandas进行操作数据,使用streamlit进行数据传输,可以实现问卷星的功能。当所有人提交后,在本地会生成每个人的评分文件,我们需要再运行一段代码来将评分文件进行合并。合并之后就能直观看到总平均分啦。当然还能进行优化,比如将这些代码整合到一起,实时计算等。这样我们把所有的评分输入后,点击提交,就能生成一个评分的csv文件了。例如刘备、关羽、张飞三人的学号、姓名、专业和班级。首先需要准备一个模板文件,写入待用户评分的人。
2023-06-27 14:41:12 1138
原创 streamlit——搭建作业、文件上传网站(代码编写、服务器部署)
streamlit能够快速地完成我们所需要的内容。并且部署方便(在服务器上开通端口号直接运行即可)
2023-06-24 10:08:41 7146 2
原创 python自动化办公——读取PPT写入word表格
将PPT中的内容提取了出来并写入了word表格。也可以根据定制化需求自由编写代码,来实现书写的格式。
2023-06-22 23:12:15 1035 1
原创 python自动化办公——定制化将电子签名批量签写到PDF文件
传入原始PDF、电子签名,输出pdf。我们只需将需要签名的坐标找到,并插入图片即可。
2023-06-18 21:52:01 4864 4
原创 知识图谱项目——红色文化之张学良人物知识图谱(Neo4j+vue+flask+mysql实现)
本项目为人工智能专业大三知识图谱课程期末作业。意在完成一个以张学良为背景的红色文化类知识图谱。文末放上本项目的代码地址。
2023-06-17 21:57:10 4453 6
原创 基于OpenCV的haar分类器实现人脸检测分析
🚀Haar分类器是一种基于机器学习的目标检测算法,它使用Haar特征描述图像中的目标。本文详细介绍了haar分类器的使用。
2023-05-06 20:04:28 3040 2
原创 最优化理论(一)Fibonacci法(python实现)
鉴于网上基于python实现的系列算法很杂很散(基本没有)如需要电子版《最优化理论》用于学习交流可以点个大大的关注并私聊博主。正好还有这门课程,所以我会陆续分享一些此类算法的代码编写。
2023-05-04 17:31:56 1377
原创 畅谈自然语言处理——初识NLP技术
自然语言处理(Natural Language Processing)简称NLP,是人工智能的一个重要领域,NLP技术通过让计算机模拟人类语言的交际过程,使计算机理解和运用人类社会的各种语言,实现人机间的自然语言交流,从而代替人的部分脑力劳动,包括:查阅资料、解答问题、翻译等我们使用自然语言时,需要经过哪些步骤呢?很明显是先听,再理解,之后思考,最后说这四个步骤。计算机进行自然语言处理时也遵循这四个步骤。按着四个步骤分为四种技术,分别为语音识别、自然语言理解、自然语言生成和语言合成。
2023-04-24 14:54:34 978
原创 知识图谱:Neo4j数据库的基本使用——创建张学良的关系谱
知识图谱(Knowledge Graph)是人工智能的重要分支技术,它在2012年由谷歌提出,是结构化的语义知识库,用于以符号形式描述物理世界中的概念及其相互关系,其基本组成单位是“实体—关系—实体”三元组,以及实体及其相关属性—值对,实体间通过关系相互联结,构成网状的知识结构。Neo4j 是一种开源的、基于 Graph 数据库的工具,具有简单的图形用户界面 (GUI) 和命令行界面 (CLI)图1 neo4j。
2023-04-14 22:00:36 2980
原创 CV大模型应用:Grounded-Segment-Anything实现目标分割、检测与风格迁移
segment-anything的简介和grounded-segment-anything在线使用教程
2023-04-13 15:05:58 6720 3
原创 机器学习:多项式拟合分析中国温度变化与温室气体排放量的时序数据
使用多项式回归进行时序数据分析,还包括xlrd的使用以及plt中汉字的显示方法。
2023-04-11 11:18:14 1946
原创 计算机视觉(四):基于Scipy图像处理技术,高斯差分(图像模糊)、图像形态学(开运算)
图像形态学能够度量和分析图像的基本形状。常用作为例如车牌号识别等应用上的一部分处理操作。
2022-11-24 12:19:32 1271 1
原创 计算机视觉(三):基于Scipy图像处理技术,图像模糊(灰色、彩色图像高斯模糊)、图像导数(sobel算子滤波)
图像的高斯模糊是经典的图像卷积案例,其本质是将图像和一个高斯核进行卷积操作。方向的如中间两幅图,各自显示出了其细节。对灰度图像进行任意方向的求导都可以让图像强度发生变化。可以用 离散近似 的方式来计算图像导数,使用卷积操作。图像的梯度向量用来描述图像强度变化的强弱.
2022-11-22 22:44:00 2444
原创 PythonWeb框架——Flask(Flask基础与jinja2模板使用)
Flask是一个使用编写的轻量级 Web 应用框架。简单记录一下学习过程
2022-10-07 16:09:40 737 1
机器学习技术专栏数据集
2023-08-30
求解用python遍历哈夫曼编码(中序遍历、后序遍历)
2021-11-17
TA创建的收藏夹 TA关注的收藏夹
TA关注的人