三角函数解题中周期的选择技巧

前言

三角函数是高中阶段比较常见的周期函数,研究其性质或者解有关三角函数不等式时,肯定少不了周期性的考量。一般情况下基本周期我们都选\([0,2\pi]\)来研究,但不是所有问题都这样选取周期就简单,以下举例说明。

一、研究单调性

例1 研究函数\(y=2sin(3x+\cfrac{\pi}{4})+1\)的单调区间。(整体思想:\(X=3x+\cfrac{\pi}{4}\))

分析:由于函数\(y=2sin(3x+\cfrac{\pi}{4}[X])+1\)的单调区间和函数\(y=sinX\)的单调区间相同,原因是函数\(y=sinx\)在纵轴方向上平移和伸缩时并不影响原函数的单调区间

故只需要研究\(y=sinX\)的单调性,就可以仿照完成问题的求解。

函数\(y=sinX\)在区间\([2k\pi-\cfrac{\pi}{2},2k\pi-\cfrac{\pi}{2}](k\in Z)\)上单调递增,

在区间\([2k\pi+\cfrac{\pi}{2},2k\pi+\cfrac{3\pi}{2}](k\in Z)\)上单调递减,

故令\(3x+\cfrac{\pi}{4}\in [2k\pi-\cfrac{\pi}{2},2k\pi+\cfrac{\pi}{2}](k\in Z)\)

即得到原函数的单调递增区间;

\(3x+\cfrac{\pi}{4}\in [2k\pi+\cfrac{\pi}{2},2k\pi+\cfrac{3\pi}{2}](k\in Z)\)

即得到原函数的单调递减区间;

小结:本类问题中,基本周期的选择是\([-\cfrac{\pi}{2},\cfrac{3\pi}{2}]\),原因是这样选用的周期,得到的单调区间是连续的。如果选取基本周期为\([0,2\pi]\),后续的表达由于不连续,反倒很不方便。

二、研究解不等式

例2 解不等式\(2sin(x+\cfrac{\pi}{4})-1>0\)

分析:先转化为\(sin(x+\cfrac{\pi}{4})>\cfrac{1}{2}\),此时基本周期选\([0,2\pi]\)

可以看到,当\(sinx>\cfrac{1}{2}\)时,在基本周期内的解集为\((\cfrac{\pi}{6},\cfrac{5\pi}{6})\)

992978-20180406161633427-636016503.png

故先令\(x+\cfrac{\pi}{4}\in (\cfrac{\pi}{6},\cfrac{5\pi}{6})\),解得

\(x\in (\cfrac{\pi}{6}-\cfrac{\pi}{4},\cfrac{5\pi}{6}-\cfrac{\pi}{4})\),即\(x\in (-\cfrac{\pi}{12},\cfrac{7\pi}{12})\)

故在\(R\)上的原不等式的解集为\(x\in (2k\pi-\cfrac{\pi}{12},2k\pi+\cfrac{7\pi}{12})(k\in Z)\)

例-变式 解不等式\(2sin(x+\cfrac{\pi}{4})-1<0\)

这时候我们如果选基本周期为\([0,2\pi]\),就很不方便,

992978-20180406161633427-636016503.png

原因是\(sinx<\cfrac{1}{2}\)的解集为\([0,\cfrac{\pi}{6})\)\((\cfrac{5\pi}{6},2\pi)\)是不连续的,表达很不方便,

那么怎么样作能更好些呢?

此时选基本周期为\([\cfrac{\pi}{6},\cfrac{13\pi}{6}]\),或者选基本周期为\([\cfrac{\pi}{2},\cfrac{5\pi}{2}]\),都很方便。

比如选基本周期为\([\cfrac{\pi}{6},\cfrac{13\pi}{6}]\)

则先得到\(sin(x+\cfrac{\pi}{4})<\cfrac{1}{2}\)在基本周期内的解集为

\(x+\cfrac{\pi}{4}\in (\cfrac{5\pi}{6},\cfrac{13\pi}{6})\),从而解得

\(x \in (\cfrac{7\pi}{12},\cfrac{23\pi}{12})\)

然后拓展得到\(R\)上的原不等式的解集为\(x\in (2k\pi+\cfrac{7\pi}{12},2k\pi+\cfrac{23\pi}{12})(k\in Z)\)

转载于:https://www.cnblogs.com/wanghai0666/p/10401093.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值