等差数列的性质

一、等差数列的相关概念:

  • 定义:自然语言,略;符号语言:\(a_n-a_{n-1}=d(n\ge 2,n\in N^*)\)\(d\)为常数或\(a_{n+1}-a_n=d(n\in N^*)\)

  • 等差中项:若\(a,A,b\)成等差数列,则\(A\)称为\(a\)\(b\)的等差中项,即\(A=\cfrac{a+b}{2}\),任意两个实数必有等差中项,但任意两个实数不一定有等比中项。

  • 通项公式\(a_n\)\(a_n=a_1+(n-1)d\),其推广式:\(a_n=a_m+(n-m)d\)

  • \(n\)项和公式\(S_n\)\(S_n=\cfrac{n(a_1+a_n)}{2}=na_1+\cfrac{n(n-1)\cdot d}{2}\)

二、等差数列的性质

①等差数列中,若\(m+n=p+q=2k(m,n,p,q,k\in N^*)\),则\(a_m+ a_n=a_p+ a_q=2a_k\)

②若数列\(\{a_n\}\)\(\{b_n\}\)(项数相同)是等差数列,则\(\{\lambda a_n\}\)\(\{a_n+b_n\}\)\(\{a_n-b_n\}\)仍然是等比数列;

③在等差数列\(\{a_n\}\)中,等距离取出若干项也构成一个等差数列,即\(a_n,a_{n+k},a_{n+2k},a_{n+3k},\cdots\)为等比数列,公比为\(nd\)

④等差比数列\(\{a_n\}\)的前\(n\)项和为\(S_n\),则\(S_n,S_{2n}-S_n,S_{3n}-S_{2n},\cdots ,\)仍成等差数列,但是同样的性质到了等比数列中,就有了一定的限制。

⑤等差求和公式的应用:\(S_{2n-1}=(2n-1)\cdot a_n\)\(S_{2n}=n(a_1+a_{2n})=\cdots=n(a_n+a_{n+1})\)

⑥等差数列的单调性:\(a_n=a_1+(n-1)d=d\cdot n+(a_1-d)\),故\(a_n=f(n)\)\(n\)的仿一次函数,其单调性完全取决与公差\(d\)

\(d>0\)\(a_n\)单调递增;当\(d<0\)\(a_n\)单调递减;当\(d=0\)\(a_n\)为常数列,无单调性;

⑦若数列\(\{a_n\}\)为等差数列,且公差\(d\neq 0\),则数列\(\{\cfrac{S_n}{n}\}\)也为等差数列;

分析:\(S_n=An^2+Bn(A\neq 0)\),则\(\cfrac{S_n}{n}=An+B\),则数列\(\{\cfrac{S_n}{n}\}\)也为等差数列;

⑧两个等差数列\(\{a_n\}\)\(\{b_n\}\)的前\(n\)项和分别为\(S_n\)\(T_n\),则有\(\cfrac{S_{2n-1}}{T_{2n-1}}=\cfrac{a_n}{b_n}\)

证明:由于等差数列\(\{a_n\}\)\(\{b_n\}\)的前\(n\)项和分别为\(S_n\)\(T_n\)

\(S_{2n-1}=(2n-1)a_n\)\(T_{2n-1}=(2n-1)b_n\),故\(\cfrac{S_{2n-1}}{T_{2n-1}}=\cfrac{a_n}{b_n}\)

⑨若等差数列\(\{a_n\}\)满足\(a_n>0\),则可知\(d\ge 0\),可知\(S_n>0\),且数列\(\{S_n\}\)是单调递增数列;若等差数列\(\{a_n\}\)满足\(S_n>0\),则可知\(d\ge 0\),也可知\(a_n>0\)

二、等差数列的判断和证明

  • 等差数列的证明方法:

定义法:\(a_{n+1}-a_n=d\)\(d\)为常数,

等差中项法:\(2a_{n+1}=a_n+a_{n-1},n\ge 2,n\in N^*\)

  • 等差数列的判断方法:

除了定义法和等差中项法外,还有

通项公式法:\(a_n=pn+q\),(\(p,q\)为常数),\(a_n\)\(n\)的仿一次函数;

\(n\)项和法:\(S_n=An^2+Bn\),(\(A,B\)为常数),\(S_n\)\(n\)的仿二次函数;

三、等差数列的相关运算和技巧

① 数列的项数的计算

\(a_n=a_1+(n-1)\cdot d\),可得项数\(n=\cfrac{a_n-a_1}{d}+1\),推广得到项数\(n=\cfrac{a_n-a_m}{d}+1\)

如数列\(2^1,2^3,2^5,\cdots ,2^{2n-1}\)的项数的计算,其项数可以利用上标来计算,其上标刚好成等差数列,

项数\(r=\cfrac{a_n-a_1}{d}+1=\cfrac{(2n-1)-1}{3-1}+1=n\)

  • 比如区间\((9^{m-1}+\cfrac{8}{9},9^{2m-1}+\cfrac{8}{9})\)有几个整数?

个数为\(9^{2m-1}-(9^{m-1}+1)+1=9^{2m-1}-9^{m-1}\)

② 约分技巧

当题目中出现\(a_n>0\),或者正项数列,则涉及方程或者不等式的运算中十之八九要约分,要么约掉\(a_n\),或者约掉\(a_{n+1}+a_n\)。如题目中有\((a_{n+1}+a_n)(a_{n+1}-a_n)=2(a_{n+1}+a_n)\)\(a_n>0\);由此得到\(a_{n+1}-a_n=2\)

③在\(\Delta ABC\)中,三个内角\(A、B、C\)成等差数列,则\(B=\cfrac{\pi}{3}\)。三条边成等差数列,则\(3n,4n,5n\)就是一个特例,可以考虑赋值法。

④ 当下标比较小的时候,直接计算比变形求解要来的快。注意恰当的数学方法选择策略,防止思维定势。

比如在数列\(\{a_n\}\)中,\(a_1=3\)\(a_{n+1}=\cfrac{3a_n}{a_n+3}\),求\(a_4\)的值,

法1:由\(a_1=3\)和递推公式\(a_{n+1}=\cfrac{3a_n}{a_n+3}\),直接计算\(a_2\)\(a_3\)\(a_4\),速度要快的多。

法2:先利用倒数法求的通项公式\(a_n\),再计算\(a_4\),要比法1的思路慢一些。

四、等差数列的给出方式

  • 直接给出:\(a_{n+1}-a_n=3\)

  • 变形给出:\(S_{n+1}=S_n+a_n+3\),即\(a_{n+1}-a_n=3\)

  • 变形给出:点\((a_{n+1},a_n)\)在直线\(x-y-3=0\)上,则\(a_{n+1}-a_n=3\)

  • 运算给出:\((a_{n+1}+a_n)(a_{n+1}-a_n)=2(a_{n+1}+a_n)\)\(a_n>0\)

  • 向量给出:\(\overrightarrow{P_nP_{n+1}}=(1,a_{n+1}-a_n)=(1,3)\)

  • 构造给出:

\((n+1)a_n=na_{n+1}\),构造得到,\(\cfrac{a_{n+1}}{n+1}=\cfrac{a_n}{n}\),即\(\cfrac{a_{n+1}}{n+1}-\cfrac{a_n}{n}=0\),即数列\(\{\cfrac{a_n}{n}\}\)为常数列;

再如\((n+1)a_{n+1}=na_n\),构造得到,\((n+1)a_{n+1}-na_n=0\),即数列\(\{n\cdot a_n\}\)为常数列;其他请参阅常见构造方法

五、典例剖析:

例1已知等差数列\(\{a_n\}\)\(\{b_n\}\),满足\(a_1+b_{10}=9\)\(a_3+b_8=15\),则\(a_5+b_6\)=______________.

分析:由已知得到,\(a_3+b_8=\cfrac{2a_3+2b_8}{2}\)

\(=\cfrac{(a_1+a_5)+(b_{10}+b_6)}{2}=\cfrac{(a_1+b_{10})+(a_5+b_6)}{2}\)

\(15=\cfrac{9+(a_5+b_6)}{2}\),解得\(a_5+b_6=21\)
例2由正数组成的等差数列\(\{a_n\}\)\(\{b_n\}\)的前\(n\)项和分别为\(S_n\)\(T_n\),且\(\cfrac{a_n}{b_n}=\cfrac{2n-1}{3n-1}\),则\(\cfrac{S_5}{T_5}\)=______________。

分析:\(\cfrac{S_5}{T_5}=\cfrac{5a_3}{5b_3}=\cfrac{a_3}{b_3}=\cfrac{2\times 3-1}{3\times 3-1}=\cfrac{5}{8}\)

例3在等差数列\(\{a_n\}\)中,\(a_1=-2018\),其前\(n\)项和为\(S_n\),若\(\cfrac{S_{12}}{12}-\cfrac{S_{10}}{10}=2\),则\(S_{2018}\)的值等于【】

$A.-2018$ $B.-2016$ $C.-2019$ $D.-2017$

分析:由题意可知,数列\(\{\cfrac{S_n}{n}\}\)为等差数列,且其公差为\(1\)

\(\cfrac{S_{2018}}{2018}=\cfrac{S_1}{1}+(2018-1)\times 1=-2018+2017=-1\)

\(S_{2018}=-2018\)。故选\(A\)

例4【2014高考全国卷Ⅰ】已知数列\(\{a_n\}\)的前\(n\)项和为\(S_n\)\(a_1=1\)\(a_n\neq 0\)\(a_na_{n+1}=\lambda S_n-1\),其中\(\lambda\)为常数,

(1)证明:\(a_{n+2}-a_n=\lambda\)

分析:先想办法消掉\(S_n\)类,让条件中只剩下\(a_n\)类,故求解如下:

由题设知道,\(a_na_{n+1}=\lambda S_n-1\)①,

则有\(a_{n+1}a_{n+2}=\lambda S_{n+1}-1\)②,

②-①得到,\(a_{n+1}a_{n+2}-a_na_{n+1}=\lambda(S_{n+1}-S_n)\)

\(a_{n+1}(a_{n+2}-a_n)=\lambda a_{n+1}\)

由于\(a_{n+1}\neq 0\),约掉\(a_{n+1}\)得到,

\(a_{n+2}-a_n=\lambda\)

【注意】上式表明,数列\(\{a_n\}\)中,奇数项成等差数列,首项为\(a_1\),公差为\(\lambda\)

偶数项成等差数列,首项为\(a_2\),公差为\(\lambda\)

(2)是否存在\(\lambda\),使得\(\{a_n\}\)为等差数列,并说明理由。

分析:存在满足题意的实数\(\lambda\),使得数列\(\{a_n\}\)成等差数列,理由如下:

由题设可知,\(a_1=1\),令\(n=1\),则\(a_1a_2=\lambda S_1-1\),解得\(a_2=\lambda-1\)

又由\(a_{n+2}-a_n=\lambda\)可知,当\(n=1\)时,\(a_3=\lambda+1\)

\(2a_2=a_1+a_3\),即\(2(\lambda-1)=1+\lambda+1\),解得\(\lambda=4\)

\(a_{n+2}-a_n=4\),且可知

数列\(\{a_{2n-1}\}\)是首项为\(1\),公差为\(4\)的等差数列,\(a_{2n-1}=4n-3\)

\(a_{2n-1}=1+\cfrac{[(2n-1)-1]}{2}\times 4=4n-3=2(2n-1)-1\)

数列\(\{a_{2n}\}\)是首项为\(3\),公差为\(4\)的等差数列,\(a_{2n}=4n-1\)

\(a_{2n}=3+\cfrac{(2n-1)}{2}\times 4=4n-1=2(2n)-1\)

所以\(a_n=2n-1\)\(n\in N^*\),即\(a_{n+1}-a_n=2\)

因此存在满足题意的实数\(\lambda\),使得数列\(\{a_n\}\)成等差数列。

例5【2018•凤中模拟】【考点:数列的单调性,二次函数的对称性和单调性,恒成立命题】

已知数列\(\{a_n\}\)中,\(a_n=n^2-kn(k\in N)\),且\(\{a_n\}\)单调递增,则\(k\)的取值范围为【 】

$A.(-\infty,2]$ $B.(-\infty,3)$ $C.(-\infty,2)$ $D.(-\infty,3]$

【法1】、由于\(a_n=n^2-kn(n\in N^*)\),且\(\{a_n\}\)单调递增,

所以\(a_{n+1}-a_n>0\)\(\forall n\in N*\)都成立,

\(a_{n+1}-a_n=(n+1)^2-k(n+1)-n^2+kn=2n+1-k\),所以由\(2n+1-k>0\)

\(k<2n+1\)恒成立,可知\(k<(2n+1)_{min}=3\).

【法2】:借助二次函数的对称性和单调性,

\(a_n=(n-\cfrac{k}{2})^2-\cfrac{k^2}{4}\),其对称轴是\(n=\cfrac{k}{2}\)

要使得\(\{a_n\}\)单调递增,

则必须且只需\(\cfrac{k}{2}<\cfrac{3}{2}\),解得\(k<3\),故选\(B\)

【法3】:尝试导数法。

\(a_n=f(n)=n^2-kn\)为单调递增数列,则\(f'(n)\ge 0\)\(n\in N^*\)上恒成立,

\(f'(n)=2n-k\ge 0\)\(n\in N^*\)上恒成立,分离参数得到,

\(k\leq 2n\)\(n\in N^*\)上恒成立,即\(k\leq (2n)_{min}=2\)

\(k\leq 2\)。这个解法是错误的。

错因分析:数列\(a_n=f(n)\)单调递增,但函数\(y=f(x)\)不一定单调递增,

但是若函数\(y=f(x)\)单调递增,则其对应的数列\(a_n=f(n)\)必然单调递增。

感悟反思:

1、法1转化为恒成立问题,很好理解;

2、法2很容易错解为 \(\cfrac{k}{2}<1\),故\(k<2\),其实这是充分不必要条件,也就是说遗漏了一部分的解集,可以看看上面的图像解释。

3、数列\(\{a_n\}\)单调递增的充要条件是\(a_{n+1}>a_n\),而不是\(f'(x)\ge 0\)恒成立。

例6【2019届•高三理科数学课时作业】

已知等差数列\(\{a_n\}\)的前\(n\)项和为\(S_n\),其中\(n\in N^*\),则下列命题错误的是【】

$A.若a_n>0,则S_n>0$ $B.若S_n>0,则a_n>0$
$C.若a_n>0,则\{S_n\}是单调递增数列$ $D.则\{S_n\}是单调递增数列,则a_n>0$

分析:选项\(A\):由于\(a_n>0\),由\(S_n=\cfrac{n(a_1+a_n)}{2}\)可得,\(S_n>0\),或由定义式可知\(S_n=a_1+a_2+\cdots+a_n>0\);而且由\(a_n>0\)能得到\(d\ge 0\),否则\(d<0\)就不能保证\(a_n>0\)。故选项\(A\)正确;

选项\(B\):由于\(S_n>0\),则可知\(d\ge 0\),否则不能保证\(S_n>0\)。这样得到\(a_n=a_1+(n-1)d>0\),故选项\(B\)正确;

选项\(C\):由于\(a_n>0\),则可知\(d\ge 0\),可知数列\(\{S_n\}\)是单调递增数列,故选项\(C\)正确;

选项\(D\):由数列\(\{-1,1,3,5,\cdots\}\)可知,\(S_1=-1\)\(S_2=0\)\(S_3=3\)\(S_4=8\),则数列\(\{S_n\}\)是单调递增数列,但不能保证\(a_n>0\),故选项\(D\)不正确;

综上所述,故选\(D\)

反思总结:若有\(a_n>0\),则即使数列不是等差数列,也必有\(S_n>0\),且有数列\(\{S_n\}\)是单调递增数列。

例7【2019届•高三理科数学课时作业】【2018广东潮州二模】

在我国古代著名的数学专著《九章算术》中有一段叙述:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增一十三里;驽马初日行九十七里,日减半里,良马先至齐,复还迎驽马,二马相逢,问:几日相逢?【】

$A.8日$ $B.9日$ $C.12日$ $D.16日$

分析:良马日行构成等差数列\(\{a_n\}\),其中\(a_1=103\),公差\(d_1=13\),其前\(n\)项和为\(S_n\)

驽马日行构成等差数列\(\{b_n\}\),其中\(b_1=97\),公差\(d_2=-\cfrac{1}{2}\),其前\(n\)项和为\(T_n\)

设两马\(n\)日能相逢,则由题可知,\(S_n+T_n=2\times 1125\),即\(103n+\cfrac{n(n-1)}{2}\times 13+97n+\cfrac{n(n-1)}{2} \times (-\cfrac{1}{2})=2250\)

解得\(n=9\),或者由上式直接验证得到\(n=9\),故选\(B\)

例8【2018广东中山期末】已知等差数列\(\{a_n\}\)的前\(n\)项和为\(S_n\)\(S_4=40\)\(S_n=210\)\(S_{n-4}=130\),则\(n\)=【】

$A.12$ $B.14$ $C.16$ $D.18$

法1:建立相应的方程组求解即可,只是运算可能复杂些;

法2:利用等差数列的性质,\(S_n-S_{n-4}=80\),即\(a_n+a_{n-1}+a_{n-2}+a_{n-3}=80\)

\(a_1+a_2+a_3+a_4=40\),两式相加,得到\(4(a_1+a_n)=120\),即\(a_1+a_n=30\)

\(S_n=\cfrac{n(a_1+a_n)}{2}=210\),则\(n=14\),故选\(B\)

例9

转载于:https://www.cnblogs.com/wanghai0666/p/10193879.html

  • 2
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值