生成器
在 Python 中,使用了 yield 的函数被称为生成器(generator)。
生成器是一个返回迭代器的函数,只能用于迭代操作,更简单点理解生成器就是一个迭代器。在调用生成器运行的过程中,每次遇到 yield 时函数会暂停并保存当前所有的运行信息,返回 yield 的值, 并在下一次执行 next() 方法时从当前位置继续运行。调用一个生成器函数,返回的是一个迭代器对象。
列表推导式空间开销大 占用内存 耗时大,.生成器保存的是算法,而列表保存的计算后的内容,所以同样内容的话生成器占用内存小,生成器的好处是可以一边循环一边进行计算,不用一下子就生成一个很大的集合,占用内存空间。生成器的使用节省内存空间。
生成器的创建方式:g=(x for x in range(5))
生成器访问方式
1.next() 调用一次生成一次的值 直到报异常 stopIteration
2.for..in..遍历生成器
. 使用for 循环来遍历生成器内容,因为生成器也是可迭代对象。通过 for 循环来迭代它,不需要关心 StopIteration 异常。但是用for循环调用generator时,得不到generator的return语句的返回值。如果想要拿到返回值,必须用next()方法,且捕获StopIteration错误,返回值包含在StopIteration的value中
3.g.__next__() 等同于next()
g = (x for x in range(1000))
1.print(type(g))
2.for i in g:
print(i)
3.print(g.__next__())
4. def test():
for x in range(5):
yield x
p=test()
print(next(p))