BZOJ 2734 集合选数(状态压缩DP)

题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2734

题意:给出一个由1到n的数字组成的集合。定义合法子集为若x在子集中则2x、3x均不能在子集中。求有多少个合法的子集。

思路:

1   3    9

2   6    18

4   12   36

对于上面的矩阵,我们发现就等价于不选相邻数字的方案数。因此枚举每个还没有用到的数字,建立以该数字为左上角的矩阵。接着就是状态压缩DP。

 

int a[N][N];
i64 f[2][1<<12];
int n,r,c,h[100005];


void init(int x)
{
    r=0,c=0; clr(a,0);
    int p1=x,p2,tempC;
    while(p1<=n)
    {
        tempC=0;
        for(p2=p1;p2<=n;p2*=3) a[r][tempC++]=p2,h[p2]=1;
        upMax(c,tempC);
        r++;
        p1<<=1;
    }
}


int set0(int st,int k)
{
    if(st&(1<<k)) return st^(1<<k);
    return st;
}


int get(int st,int k)
{
    return st&(1<<k);
}


void up(i64 &x,i64 y)
{
    x+=y;
    if(x>=mod) x-=mod;
}






i64 DP()
{
    int pre=0,cur=1,M=1<<c;
    int i,j,k,t;
    FOR0(i,M) f[pre][i]=0;
    f[pre][0]=1;
    FOR0(i,r) FOR0(j,c)
    {
        FOR0(k,M) f[cur][k]=0;
        FOR0(t,M) if(f[pre][t])
        {
            up(f[cur][set0(t,j)],f[pre][t]);
            if(!a[i][j]) continue;
            if(j==0)
            {
                if(!(t&1)) up(f[cur][t|1],f[pre][t]);
            }
            else
            {
                if(!get(t,j)&&!get(t,j-1)) up(f[cur][t|(1<<j)],f[pre][t]);
            }
        }
        swap(pre,cur);
    }
    i64 ans=0;
    FOR0(i,M) up(ans,f[pre][i]);
    return ans;
}


int main()
{
    RD(n);
    i64 ans=1;
    int i;
    FOR1(i,n) if(!h[i])
    {
        init(i);
        ans=ans*DP()%mod;
    }
    PR(ans);
}

 

 

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值