题目描述
《集合论与图论》这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不能在该子集中。同学们不喜欢这种具有枚举性 质的题目,于是把它变成了以下问题:对于任意一个正整数 n≤100000,如何求出{1, 2,…, n} 的满足上述约束条件的子集的个数(只需输出对 1,000,000,001 取模的结果),现在这个问题就 交给你了。
输入格式
只有一行,其中有一个正整数 n,30%的数据满足 n≤20。
输出格式
仅包含一个正整数,表示{1, 2,…, n}有多少个满足上述约束条件 的子集。
样例输入
4
样例输出
8
样例解释
有8 个集合满足要求,分别是空集,{1},{1,4},{2},{2,3},{3},{3,4},{4}。
题解
状态压缩dp
这道题目的思路真的很巧。我们可以构造一个矩阵如下
x | 3x | 9x | 27 x |
---|---|---|---|
2x | 6x | 18x | 54x |
4x | 12x | 36 x | 108 x |
8x | 24x | 72x | 216 x |
此时令 x=1 ,我们可以得到
1 | 3 | 9 | 27 |
---|---|---|---|
2 | 6 | 18 | 54 |
4 | 12 | 36 | 108 |
8 | 24 | 72 | 216 |
我们可以观察到,每个数和他相邻的数都不可同时取,可以计算出本矩阵中取数的方案数。
但是我们会发现漏了5和7,那么按照上面进行构造。
计算出所有矩阵的结果,因为不同矩阵间的数是一定可以共同存在的,此时乘法原理,将各矩阵求得的方案数相乘取模即为答案。
如何统计方案数
f [i][