[BZOJ2734]集合选数

本文介绍了一道《集合论与图论》课程的作业题,要求求出满足特定条件的子集个数。给定正整数n≤100000,需要找出{1, 2,..., n}中所有使得如果x在子集中,则2x和3x不在子集中的子集。问题转化为计算满足约束的子集数量并取模1,000,000,001。文章提供了一个基于状态压缩DP的解决方案,通过构造矩阵计算不同状态的方案数,并将方案数相乘取模得到答案。" 133048770,20037732,Java与OpenCV图像处理实战教程,"['图像处理', 'Java编程', 'OpenCV库', '计算机视觉', '图像分析']
摘要由CSDN通过智能技术生成

题目描述

《集合论与图论》这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不能在该子集中。同学们不喜欢这种具有枚举性 质的题目,于是把它变成了以下问题:对于任意一个正整数 n≤100000,如何求出{1, 2,…, n} 的满足上述约束条件的子集的个数(只需输出对 1,000,000,001 取模的结果),现在这个问题就 交给你了。

输入格式

只有一行,其中有一个正整数 n,30%的数据满足 n≤20。

输出格式

仅包含一个正整数,表示{1, 2,…, n}有多少个满足上述约束条件 的子集。

样例输入

4

样例输出

8

样例解释

有8 个集合满足要求,分别是空集,{1},{1,4},{2},{2,3},{3},{3,4},{4}。

题解

状态压缩dp

这道题目的思路真的很巧。我们可以构造一个矩阵如下

x 3x 9x 27 x
2x 6x 18x 54x
4x 12x 36 x 108 x
8x 24x 72x 216 x

此时令 x=1 ,我们可以得到

1 3 9 27
2 6 18 54
4 12 36 108
8 24 72 216

我们可以观察到,每个数和他相邻的数都不可同时取,可以计算出本矩阵中取数的方案数。
但是我们会发现漏了5和7,那么按照上面进行构造。
计算出所有矩阵的结果,因为不同矩阵间的数是一定可以共同存在的,此时乘法原理,将各矩阵求得的方案数相乘取模即为答案。

如何统计方案数
f [i][

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值