POJ 3177 Redundant Paths

宇宙无敌超级大模版完全支持重边哦!~~第一次得到了验证!!!!

这题和POJ 3352 是一模一样的。

POJ 3352题解,这里不再赘述,唯一区别就是重边,http://www.cnblogs.com/zufezzt/p/4722538.html

完全支持重边的无敌模板:http://www.cnblogs.com/zufezzt/p/4699731.html

#include<cstdio>
#include<cstring>
#include<cmath>
#include<vector>
#include<algorithm>
using namespace std;

const int maxn=10000+10; //结点数量
const int Maxn=2*100000+10; //边的数量
int low[maxn];
int dfn[maxn];
int U[maxn],V[maxn];//存初始边
int flag[maxn];//判断第i条边是不是割边
int iscut[maxn];//判断i结点是不是割点,去掉之后有几个连通分量
struct Edge
{
    int from,to,id,ans;//ans为1,表示这条边是割边
} edge[Maxn];
vector<int>G[maxn];//邻接表
int N,M;//N个结点,M条边
int tmpdfn;//时间戳
int tot;
int son;
int Start,End;

//以下是输出点双连通分量用的
int top;
struct Printf_Egde
{
    int u,v,id;
    void output()
    {printf("(%d,%d) ",u,v);}
};
Printf_Egde Stack[Maxn];
int Flag[Maxn];

int TxT[maxn];//求边双连通分量用的

//以下是缩点
vector<int>SD[maxn];
int FFLAG[maxn];
int JiHe[maxn];
int BianHao;
int RuDu[maxn];

void init()
{
    for(int i=0; i<maxn; i++) G[i].clear();
    for(int i=0; i<maxn; i++) SD[i].clear();
    memset(JiHe,-1,sizeof(JiHe));
    memset(low,0,sizeof(low));
    memset(dfn,0,sizeof(dfn));
    memset(iscut,0,sizeof(iscut));
    memset(Flag,0,sizeof(Flag));
    memset(flag,0,sizeof(flag));
    memset(TxT,0,sizeof(TxT));
    memset(FFLAG,0,sizeof(FFLAG));
    memset(RuDu,0,sizeof(RuDu));
    low[1]=dfn[1]=1;
    tmpdfn=0;
    tot=0;
    son=0;
    top=-1;

    BianHao=1;
}

void AddEdge(int u,int v)
{
    edge[tot].from=u;
    edge[tot].to=v;
    edge[tot].id=tot;
    edge[tot].ans=0;
    G[u].push_back(tot);
    tot++;

    edge[tot].from=v;
    edge[tot].to=u;
    edge[tot].id=tot;
    edge[tot].ans=0;
    G[v].push_back(tot);
    tot++;
}

int Tarjan(int u,int id)
{
    tmpdfn++;
    int lowu=dfn[u]=tmpdfn;
    for(int i=0; i<G[u].size(); i++)
    {
        int B=G[u][i];

        Printf_Egde t;
        if(!Flag[edge[B].id/2])//没有入过栈
        {
            Flag[edge[B].id/2]=1;
            t.u=u;
            t.v=edge[B].to;
            t.id=edge[B].id/2;
            Stack[++top]=t;
        }
        if(!dfn[edge[B].to])
        {
            int lowv=Tarjan(edge[B].to,edge[B].id);
            lowu=min(lowu,lowv);
            if(lowv>=dfn[u])
            {
                if(u!=1) iscut[u]++;
                if(u==1) son++;

                /*
                //输出点双连通分量
                printf("点双连通分量:");
                while(1)
                {
                    if(top==-1) break;
                    Printf_Egde t1;
                    t1=Stack[top];
                    t1.output();
                    top--;
                    if(t1.id==t.id) break;
                }
                printf("\n");
                */
                //判断是不是割边
                if(lowv>dfn[u])
                    edge[B].ans=1;
            }
        }
        else if(dfn[edge[B].to])
        {
            if(edge[B].id/2==id/2) continue;
            lowu=min(lowu,dfn[edge[B].to]);
        }
    }

    low[u]=lowu;
    return lowu;
}

void Display_Cutting_edge()
{
    for(int i=0; i<2*M; i++)
        if(edge[i].ans)
        {
            FFLAG[i]=1;
            //printf("第%d条边是割边:(%d,%d)\n",edge[i].id/2,edge[i].from,edge[i].to);
        }

}

void Display_Cutting_point()
{
    if(son>1) iscut[1]=son-1;
    for(int i=Start;i<=End;i++)
        if(iscut[i]){}
            //printf("编号为%d的结点是割点,删除后有%d个连通分量\n",i,iscut[i]+1);
}

void Dfs(int x,int y)
{
    int XZ=0;
    for(int i=0;i<G[x].size();i++)
    {
        int B=G[x][i];
        if(!flag[edge[B].id/2])
        {
            XZ=1;
            flag[edge[B].id/2]=1;
            TxT[edge[B].to]=1;
           // printf("(%d,%d) ",edge[B].from,edge[B].to);

            if(JiHe[edge[B].from]==-1&&JiHe[edge[B].to]==-1)
            {
                JiHe[edge[B].from]=BianHao;
                JiHe[edge[B].to]=BianHao;
                BianHao++;
            }
            else if(JiHe[edge[B].from]!=-1)
                JiHe[edge[B].to]=JiHe[edge[B].from];
            else if(JiHe[edge[B].to]!=-1)
                JiHe[edge[B].from]=JiHe[edge[B].to];

            Dfs(edge[B].to,y+1);
        }
    }
    if(!XZ&&!y)
    {

        //printf("(%d) ",x);
        if(JiHe[x]==-1)
        {
            JiHe[x]=BianHao;
            BianHao++;
        }
    }
}

void Slove()
{
    //把桥都标为1
    for(int i=0; i<2*M; i++)
        if(edge[i].ans)
            flag[edge[i].id/2]=1;

    for(int i=Start;i<=End;i++)
    {
        if(!TxT[i])
        {
            TxT[i]=1;
           // printf("边双连通分量:");
            Dfs(i,0);
           // printf("\n");
        }
    }
}

int main()
{
    while(~scanf("%d%d",&N,&M)){
    init();
    for(int i=0; i<M; i++)
    {
        scanf("%d%d",&U[i],&V[i]);
        AddEdge(U[i],V[i]);
    }

    //设置结点编号的起点和终点
    Start=1;
    End=N;

    Tarjan(1,-1);

    //割点的输出
    Display_Cutting_point();

    //割边的输出
    Display_Cutting_edge();

    //点双连通分量在Tarjan过程中已经输出了

    //求边双连通分量,并输出
    Slove();

    for(int i=0;i<2*M;i++)
    {
        if(JiHe[edge[i].from]!=JiHe[edge[i].to])
        {
            RuDu[JiHe[edge[i].from]]++;
            RuDu[JiHe[edge[i].to]]++;
        }
    }
    int AAns=0;
    for(int i=1;i<BianHao;i++)
    {
        RuDu[i]=RuDu[i]/2;
        if(RuDu[i]==1) AAns++;
    }
    printf("%d\n",(AAns+1)/2);}
    return 0;
}

 

转载于:https://www.cnblogs.com/zufezzt/p/4722550.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值