http://www.lydsy.com/JudgeOnline/problem.php?id=1791
就是求所有基环树的直径之和
加手工栈
#include<cstdio> #include<vector> #include<iostream> #include<algorithm> using namespace std; #define N 1000001 typedef long long LL; int tot=1,front[N],to[N<<1],nxt[N<<1],l[N<<1]; bool vis[N]; int fa[N],dep[N]; int cir[N<<1],val[N],cnt; bool inc[N]; LL dp[N],len[N<<1],maxn,ans; int h,t,q[N<<1]; void read(int &x) { x=0; char c=getchar(); while(!isdigit(c)) c=getchar(); while(isdigit(c)) { x=x*10+c-'0'; c=getchar(); } } void add(int u,int v,int w) { to[++tot]=v; nxt[tot]=front[u]; front[u]=tot; l[tot]=w; to[++tot]=u; nxt[tot]=front[v]; front[v]=tot; l[tot]=w; } int lev2; int st_i2[N],st_x2[N],st_y2[N],st_t2[N]; #define i st_i2[lev2] #define y st_y2[lev2] #define x st_x2[lev2] #define t st_t2[lev2] void dfs(int s,int sf) { lev2=1; st_x2[1]=s; start:; for(i=front[x];i;i=nxt[i]) { t=to[i]; if(t==y || inc[t]) continue; st_x2[lev2+1]=t; st_y2[lev2+1]=x; lev2++; goto start; end:; maxn=max(maxn,dp[x]+dp[t]+l[i]); dp[x]=max(dp[x],dp[t]+l[i]); } lev2--; if(lev2) goto end; } #undef i #undef y #undef t #undef x int lev; int st_i[N],st_x[N],st_y[N],st_t[N]; #define i st_i[lev] #define y st_y[lev] #define x st_x[lev] #define t st_t[lev] void findcircle(int s) { lev=1; st_x[lev]=s; dep[s]=1; start:; vis[x]=true; for(i=front[x];i;i=nxt[i]) { t=to[i]; if(!vis[t]) { fa[t]=x; val[x]=l[i]; dep[t]=dep[x]+1; st_x[lev+1]=t; st_y[lev+1]=i; lev++; goto start; end:; } else if(i!=(y^1)) { cnt=dep[x]-dep[t]+1; int now=x; val[x]=l[i]; while(dep[now]>=dep[t]) { inc[now]=true; len[cnt]=val[now]; cir[cnt--]=now; now=fa[now]; } cnt=dep[x]-dep[t]+1; int nn=cnt; for(int j=1;j<=cnt;++j) cir[++nn]=cir[j],len[nn]=len[j]; for(int j=2;j<=nn;++j) len[j]+=len[j-1]; for(int j=1;j<=cnt;++j) dfs(cir[j],0); h=t=0; for(int j=1;j<=nn;++j) { while(h<t && q[h]<=j-cnt) h++; if(h<t) maxn=max(maxn,dp[cir[q[h]]]+dp[cir[j]]+len[j-1]-len[q[h]-1]); while(h<t && dp[cir[j]]-len[j-1]>dp[cir[q[t-1]]]-len[q[t-1]-1]) t--; q[t++]=j; } } } lev--; if(lev) goto end; } #undef i #undef y #undef t #undef x int main() { // freopen("isl.in","r",stdin); // freopen("isl.out","w",stdout); int n; read(n); int x,y; for(int i=1;i<=n;++i) { read(x); read(y); add(i,x,y); } for(int i=1;i<=n;++i) if(!vis[i]) { maxn=0; findcircle(i); ans+=maxn; } cout<<ans; }
1791: [Ioi2008]Island 岛屿
Time Limit: 20 Sec Memory Limit: 162 MBSubmit: 1795 Solved: 400
[Submit][Status][Discuss]
Description
你将要游览一个有N个岛屿的公园。从每一个岛i出发,只建造一座桥。桥的长度以Li表示。公园内总共有N座桥。尽管每座桥由一个岛连到另一个岛,但每座桥均可以双向行走。同时,每一对这样的岛屿,都有一艘专用的往来两岛之间的渡船。 相对于乘船而言,你更喜欢步行。你希望所经过的桥的总长度尽可能的长,但受到以下的限制。 • 可以自行挑选一个岛开始游览。 • 任何一个岛都不能游览一次以上。 • 无论任何时间你都可以由你现在所在的岛S去另一个你从未到过的岛D。由S到D可以有以下方法: o 步行:仅当两个岛之间有一座桥时才有可能。对于这种情况,桥的长度会累加到你步行的总距离;或者 o 渡船:你可以选择这种方法,仅当没有任何桥和/或以前使用过的渡船的组合可以由S走到D(当检查是否可到达时,你应该考虑所有的路径,包括经过你曾游览过的那些岛)。 注意,你不必游览所有的岛,也可能无法走完所有的桥。 任务 编写一个程序,给定N座桥以及它们的长度,按照上述的规则,计算你可以走过的桥的最大长度。 限制 2 <= N <= 1,000,000 公园内的岛屿数目。 1<= Li <= 100,000,000 桥i的长度。
Input
• 第一行包含N个整数,即公园内岛屿的数目。岛屿由1到N编号。 • 随后的N行每一行用来表示一个岛。第i 行由两个以单空格分隔的整数,表示由岛i筑的桥。第一个整数表示桥另一端的岛,第二个整数表示该桥的长度Li。你可以假设对於每座桥,其端点总是位于不同的岛上。
Output
你的程序必须向标准输出写出包含一个整数的单一行,即可能的最大步行距离。 注1:对某些测试,答案可能无法放进32-bit整数,你要取得这道题的满分,可能需要用Pascal的int64或C/C++的long long类型。 注2:在比赛环境运行Pascal程序,由标准输入读入64-bit数据比32-bit数据要慢得多,即使被读取的数据可以32-bit表示。我们建议把输入数据读入到32-bit数据类型。 评分 N不会超过4,000。
Sample Input
7
3 8
7 2
4 2
1 4
1 9
3 4
2 3
3 8
7 2
4 2
1 4
1 9
3 4
2 3
Sample Output
24