《机器学习实战》
Klay Ye
这个作者很懒,什么都没留下…
展开
-
第4章 朴素贝叶斯实战(文本分类、过滤垃圾邮件、获取区域倾向)
判断文档是否属于侮辱类: 基于词集(只考虑是否出现某一单词)的训练算法: from numpy import * def loadDataSet(): postingList=[['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'], ['maybe', 'not', 'take', 'him...原创 2018-12-18 15:12:18 · 654 阅读 · 0 评论 -
第3章 决策树实战(ID3算法、创建绘制决策树、分类器、存储、预测隐性眼镜类型)
ID3算法 ID3算法的核心是在决策树各个结点上对应信息增益准则选择特征,递归地构建决策树。具体方法是:从根结点(root node)开始,对结点计算所有可能的特征的信息增益,选择信息增益最大的特征作为结点的特征,由该特征的不同取值建立子节点;再对子结点递归地调用以上方法,构建决策树;直到所有特征的信息增益均很小或没有特征可以选择为止。最后得到一个决策树。ID3相当于用极大似然法进行概率模型的选择...原创 2018-12-18 22:48:28 · 894 阅读 · 0 评论 -
独热编码(one_hot/to_categorial)
import numpy as np def one_hot(labels): '''one-hot编码''' n_samples = len(labels) n_class = max(labels)+1 onehot_labels = np.zeros((n_samples, n_class)) onehot_labels[np.arange(n_sa...原创 2019-03-17 16:26:37 · 316 阅读 · 0 评论