绝对值是初中代数的一个重要知识点,我们在引入负数以后,为了表示非负数而产生的特殊表示数的符号,它用双竖线表示,如a的绝对值就记作 |a| 。a可以是正数,也可以是负数,还可以是零。这样就有绝对值的性质:

含有绝对值的函数如何分段处理?
正数的绝对值是它本身,负数的绝对值是它的相反数,零的绝对值是零。
根据绝对值的这条性质,我们就可以做有关含有绝对值的一些数学题。
碰到含有绝对值的函数同题时,无非是要把绝对值符号去掉的问题。这就要抓住零点,分出正负来,也就是语文课上说的分段。下面我们通过几个常见题型来分析含有绝对值的函数如何分段处理。
例l 画出y=|x|的图象。
分析.这个绝对值式子比较单一,0就是分段点。当x>0时,y=x,图象在第一象限;当x<0时,y=-ⅹ,图象在第二象限;当x=0时,y=0,图象在原点。如下图①所示。
例2 求y=|x+1|+|2x-3|的值。
分析:由|x+1|=0,知x=-1。这个"-1"就是一个分段点;同理|2x-3|=0,得x=3/2。这个"3/2"又是一个分段点。这样,函数y就有两个分段点,这在数轴上就分成了三部分:从左往右有,小于-1部分,大于-1且小于3/2部分,大于3/2部分。再考虑到那两个分段点,共分五种情况,如图②所示。
解.当x
当-1
当x>3/2时,y=(ⅹ+1)+(2x-3)=3x-2;
当x=-1时,y=0+5=5;
当x=3/2时,y=(3/2+1)+0=5/2。
例3 解不等式 |x|+|ⅹ+1|+|ⅹ-3|<10。
分析:很明显,有三个分段点 -1、0、3,分四部分ⅹ
这就是说我们只用计算两端段点的情况,即考虑x3两种情形。
解:当x