本文关注应用层面的复数概念理解
复数与复平面
复数就是在一维的实数基础上引入的虚数,形成了二维的复平面。一个特定的复数就是在该复平面上的向量,如下图:

旋转向量
以旋转向量的方式可以非常方便的理解复数的计算。
例如复数
同理如果将与实轴成90度的向量
欧拉公式
结合欧拉公式的理解一下复平面旋转向量,向量
如果将

加上个动图帮助理解旋转向量和欧拉公式(图中横轴为实轴,纵轴为虚轴)

P.S. 如果是
本文关注应用层面的复数概念理解
复数就是在一维的实数基础上引入的虚数,形成了二维的复平面。一个特定的复数就是在该复平面上的向量,如下图:
以旋转向量的方式可以非常方便的理解复数的计算。
例如复数
同理如果将与实轴成90度的向量
结合欧拉公式的理解一下复平面旋转向量,向量
如果将
加上个动图帮助理解旋转向量和欧拉公式(图中横轴为实轴,纵轴为虚轴)
P.S. 如果是