本文关注应用层面的复数概念理解
复数与复平面
复数就是在一维的实数基础上引入的虚数,形成了二维的复平面。一个特定的复数就是在该复平面上的向量,如下图:
旋转向量
以旋转向量的方式可以非常方便的理解复数的计算。
例如复数
,其代表的是一个单位长度、由实轴方向逆时针旋转45度角的向量。那么该复数的平方,就是将该向量再逆时针旋转45度(因为向量为单位长度,所以长度不变化),也就是单位长度,方向为虚轴方向的向量
。
同理如果将与实轴成90度的向量
平方,就将该向量再次旋转90度,达到180度,也就是实轴上的
.这也就是最初在课本中看到的定义
。
欧拉公式
结合欧拉公式的理解一下复平面旋转向量,向量
就是一个单位长度、旋转角度为
的向量。(
也常称为相位)
如果将
更换为
,并将虚轴用j表示,旋转向量就变为
。也就成了傅利叶变换中常见的样子。
加上个动图帮助理解旋转向量和欧拉公式(图中横轴为实轴,纵轴为虚轴)
P.S. 如果是
就代表一个顺时针旋转的向量,因为随着时间的增长,相位
越来越“负”。