createbitmap 旋转90度_复数、复平面、旋转向量

本文关注应用层面的复数概念理解

复数与复平面

复数就是在一维的实数基础上引入的虚数,形成了二维的复平面。一个特定的复数就是在该复平面上的向量,如下图:

29e12bbc286ce89dac9cd3b74c0daf97.png
from wikipedia

旋转向量

以旋转向量的方式可以非常方便的理解复数的计算。

例如复数

,其代表的是一个单位长度、由实轴方向逆时针旋转45度角的向量。那么该复数的平方,就是将该向量再逆时针旋转45度(因为向量为单位长度,所以长度不变化),也就是单位长度,方向为虚轴方向的向量

同理如果将与实轴成90度的向量

平方,就将该向量再次旋转90度,达到180度,也就是实轴上的
.这也就是最初在课本中看到的定义

欧拉公式

结合欧拉公式的理解一下复平面旋转向量,向量

就是一个单位长度、旋转角度为
的向量。(
也常称为相位)

如果将

更换为
,并将虚轴用j表示,旋转向量就变为
。也就成了傅利叶变换中常见的样子。

cb0fa082dbfaf6df3ad9dbbe153aecdc.png
from wikipedia

加上个动图帮助理解旋转向量和欧拉公式(图中横轴为实轴,纵轴为虚轴)

db42158e2635768de37b8dd170e76f74.gif

P.S. 如果是

就代表一个顺时针旋转的向量,因为随着时间的增长,相位
越来越“负”。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值