akaze matlab 代码,AKAZE本地功能匹配

这篇教程详细介绍了如何使用AKAZE算法在MATLAB中检测和匹配图像的关键点。通过加载牛津数据集的图像,应用AKAZE计算描述符,然后使用BFMatcher进行2-nn匹配,并基于单应性矩阵筛选内liers,最终计算内lier比率。
摘要由CSDN通过智能技术生成

介绍

在本教程中,我们将学习如何使用AKAZE [5]本地功能来检测和匹配两个图像上的关键点。我们将在给定的单对应矩阵的一对图像上找到关键点,匹配它们并计数

内联数(即适合给定单应性匹配的)。

数据

我们将使用牛津数据集的Graffity序列中的图像1和3 。

85a2ca58ffccf303b4fe2b029affc8d0.png

Homography由3乘3矩阵给出:7.6285898e-01 -2.9922929e-01 2.2567123e + 02

3.3443473e-01 1.0143901e + 00 -7.6999973e + 01

3.4663091e-04 -1.4364524e-05 1.0000000e + 00

您可以在opencv / samples / cpp中找到图像(graf1.png,graf3.png)和单色(H1to3p.xml)。

源代码#include

#include

#include

#include

#include

using namespace std;

using namespace cv;

const float inlier_threshold = 2.5f; // Distance threshold to identify inliers

const float nn_match_ratio = 0.8f; // Nearest neighbor matching ratio

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
1 目标检测的定义 目标检测(Object Detection)的任务是找出图像中所有感兴趣的目标(物体),确定它们的类别和位置,是计算机视觉领域的核心问题之一。由于各类物体有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具有挑战性的问题。 目标检测任务可分为两个关键的子任务,目标定位和目标分类。首先检测图像中目标的位置(目标定位),然后给出每个目标的具体类别(目标分类)。输出结果是一个边界框(称为Bounding-box,一般形式为(x1,y1,x2,y2),表示框的左上角坐标和右下角坐标),一个置信度分数(Confidence Score),表示边界框中是否包含检测对象的概率和各个类别的概率(首先得到类别概率,经过Softmax可得到类别标签)。 1.1 Two stage方法 目前主流的基于深度学习的目标检测算法主要分为两类:Two stage和One stage。Two stage方法将目标检测过程分为两个阶段。第一个阶段是 Region Proposal 生成阶段,主要用于生成潜在的目标候选框(Bounding-box proposals)。这个阶段通常使用卷积神经网络(CNN)从输入图像中提取特征,然后通过一些技巧(如选择性搜索)来生成候选框。第二个阶段是分类和位置精修阶段,将第一个阶段生成的候选框输入到另一个 CNN 中进行分类,并根据分类结果对候选框的位置进行微调。Two stage 方法的优点是准确度较高,缺点是速度相对较慢。 常见Tow stage目标检测算法有:R-CNN系列、SPPNet等。 1.2 One stage方法 One stage方法直接利用模型提取特征值,并利用这些特征值进行目标的分类和定位,不需要生成Region Proposal。这种方法的优点是速度快,因为省略了Region Proposal生成的过程。One stage方法的缺点是准确度相对较低,因为它没有对潜在的目标进行预先筛选。 常见的One stage目标检测算法有:YOLO系列、SSD系列和RetinaNet等。 2 常见名词解释 2.1 NMS(Non-Maximum Suppression) 目标检测模型一般会给出目标的多个预测边界框,对成百上千的预测边界框都进行调整肯定是不可行的,需要对这些结果先进行一个大体的挑选。NMS称为非极大值抑制,作用是从众多预测边界框中挑选出最具代表性的结果,这样可以加快算法效率,其主要流程如下: 设定一个置信度分数阈值,将置信度分数小于阈值的直接过滤掉 将剩下框的置信度分数从大到小排序,选中值最大的框 遍历其余的框,如果和当前框的重叠面积(IOU)大于设定的阈值(一般为0.7),就将框删除(超过设定阈值,认为两个框的里面的物体属于同一个类别) 从未处理的框中继续选一个置信度分数最大的,重复上述过程,直至所有框处理完毕 2.2 IoU(Intersection over Union) 定义了两个边界框的重叠度,当预测边界框和真实边界框差异很小时,或重叠度很大时,表示模型产生的预测边界框很准确。边界框A、B的IOU计算公式为: 2.3 mAP(mean Average Precision) mAP即均值平均精度,是评估目标检测模型效果的最重要指标,这个值介于0到1之间,且越大越好。mAP是AP(Average Precision)的平均值,那么首先需要了解AP的概念。想要了解AP的概念,还要首先了解目标检测中Precision和Recall的概念。 首先我们设置置信度阈值(Confidence Threshold)和IoU阈值(一般设置为0.5,也会衡量0.75以及0.9的mAP值): 当一个预测边界框被认为是True Positive(TP)时,需要同时满足下面三个条件: Confidence Score > Confidence Threshold 预测类别匹配真实值(Ground truth)的类别 预测边界框的IoU大于设定的IoU阈值 不满足条件2或条件3,则认为是False Positive(FP)。当对应同一个真值有多个预测结果时,只有最高置信度分数的预测结果被认为是True Positive,其余被认为是False Positive。 Precision和Recall的概念如下图所示: Precision表示TP与预测边界框数量的比值 Recall表示TP与真实边界框数量的比值 改变不同的置信度阈值,可以获得多组Precision和Recall,Recall放X轴,Precision放Y轴,可以画出一个Precision-Recall曲线,简称P-R
图像匹配算法MATLAB代码通常涉及图像处理的基本操作如读取、转换、匹配等步骤,并可能包含特征检测、描述符计算及匹配验证等复杂过程。下面给出一个基础的图像匹配算法示例,即基于SIFT(尺度不变特征变换)特征点匹配MATLAB代码概述。 ### SIFT基本原理 SIFT算法是一种用于物体识别、图像旋转、缩放、平移不变的特征描述方法。其关键步骤包括: 1. **关键点定位**:找到图像中的稳定特征位置,例如角点。 2. **尺度空间极值检测**:在不同尺度下检测关键点的位置。 3. **方向分配**:为每个关键点分配一个方向,使其对旋转变化有鲁棒性。 4. **描述子生成**:从关键点周围提取局部图像信息作为描述符。 ### MATLAB 示例代码概述 #### 步骤 1: 加载并预处理图像 ```matlab I1 = imread('image1.jpg'); % 读取第一张图片 I2 = imread('image2.jpg'); % 读取第二张图片 % 转换为灰度图以便进行SIFT分析 I1_gray = rgb2gray(I1); I2_gray = rgb2gray(I2); % 使用imresize调整图像大小以节省计算资源(非必需) I1_resized = imresize(I1_gray, [500 500]); I2_resized = imresize(I2_gray, [500 500]); % 显示原始和缩小后的图片以确认是否按预期工作 figure; subplot(1,2,1); imshow(I1_resized); title('Resized Image 1'); subplot(1,2,2); imshow(I2_resized); title('Resized Image 2'); ``` #### 步骤 2: 计算SIFT特征点 ```matlab % 使用MATLAB自带的SURF函数代替SIFT,因为SIFT不是MATLAB标准库的一部分 % 实际上,SURF可以视为SIFT的一个替代品,在许多场景下提供相似的功能 features1 = surfdetect(I1_resized); features2 = surfdetect(I2_resized); % 提取描述符 [descriptors1, ~] = extractFeatures(I1_resized, features1); [descriptors2, ~] = extractFeatures(I2_resized, features2); ``` #### 步骤 3: 特征点匹配 ```matlab % 使用knnMatch函数进行特征点匹配 indexPairs = knnMatch(descriptors1, descriptors2); ``` #### 步骤 4: 可视化匹配结果 ```matlab % 提取匹配到的关键点坐标 matchedPoints1 = features1(indexPairs(:,1), :); matchedPoints2 = features2(indexPairs(:,2), :); % 绘制匹配的关键点及其连线 figure; hold on; imshow(I1_resized); plot(matchedPoints1(:,1), matchedPoints1(:,2), 'r+', 'MarkerSize', 10, 'LineWidth', 2); hold on; imshow(I2_resized); plot(matchedPoints2(:,1), matchedPoints2(:,2), 'r+', 'MarkerSize', 10, 'LineWidth', 2); for i = 1:size(indexPairs,1) line([matchedPoints1(i,1) matchedPoints2(indexPairs(i,2),1)],... [matchedPoints1(i,2) matchedPoints2(indexPairs(i,2),2)],... 'Color',[1 0.7 0], 'LineWidth', 1); end title('Feature Matching Result'); ``` 这个例子仅作为一个简单演示。在实际应用中,你可能会需要考虑更复杂的图像增强技术、噪声抑制以及更精细的特征选择策略,比如使用更先进的匹配方法(如BFMatcher)以及考虑特征点的数量和质量,以及可能使用的阈值和过滤选项。此外,对于大规模的图像匹配任务,优化代码性能(如通过并行计算)也是非常重要的。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值