函数相关知识内容一直是中考数学的热点、重难点和必考点,围绕此块内容形成的中考试题,具有题型多样、解法灵活、综合性强等鲜明特点,甚至全国各地很多地方的压轴题都是以函数为知识背景,进行设计。
提高函数,或许很多人都会把精力花在二次函数上面,我们不否认二次函数的重要性,但也不要忽视一次函数和反比例函数,毕竟整个初中函数的学习就在这三个函数中展开。
因此,为了能更好帮助大家学好函数这一块重点知识内容,我们今天就一起来讲讲与反比例函数有关的中考题型和考点。
纵观近几年全国各地中考数学试卷,我们发现围绕反比例函数设计的试题,一般会集中在函数解析式、图像和性质等基础知识内容中。一些综合性较强的问题,通常会以反比例函数的图像为载体构造平面几何图形设计出运动型试题、存在性试题、探索性试题、类比性试题等。
反比例函数相关的中考试题,讲解分析1:
如图,在△ABO中,已知A(0,4),B(﹣2,0),D为线段AB的中点.
(1)求点D的坐标;
(2)求经过点D的反比例函数解析式.
考点分析:
待定系数法求反比例函数解析式;三角形中位线定理。
题干分析:
(1)过点D作DE⊥x轴于点E,则可求出DE,BE,从而得出点D的坐标;
(2)设经过点D的反比例函数解析式为y=k/x.将点D的坐标代入即可得出解析式.
解题反思:
本题考查了三角形的中位线定理以及用待定系数法求反比例函数的解析式,是基础知识要熟练掌握.
反比例函数相关的中考试题,讲解分析2:
如图,直线y=6﹣x交x轴、y轴于A、B两点,P是反比例函数y=4/x(x>0)图象上位于直线下方的一点,过点P作x轴的垂线,垂足为点M,交AB于点E,过点P作y轴的垂线,垂足为点N,交AB于点F.则AF•BE的值为多少?
考点分析:
反比例函数综合题;代数综合题;数形结合。
题干分析:
首先作辅助线:过点E作EC⊥OB于C,过点F作FD⊥OA于D,然后由直线y=6﹣x交x轴、y轴于A、B两点,求得点A与B的坐标,则可得OA=OB,即可得△AOB,△BCE,△ADF是等腰直角三角形,则可得AF•BE=√2CE•√2DF=2CE•DF,又由四边形CEPN与MDFP是矩形,可得CE=PN,DF=PM,根据反比例函数的性质即可求得答案.
解题反思:
此题考查了反比例函数的性质,以及矩形、等腰直角三角形的性质.解题的关键是注意数形结合与转化思想的应用.
在一些问题中,往往会把反比例函数与面积结合在一起,形成难度较高的综合问题。此类试题往往具有形式灵活、立意新颖等特点,能很好地考查学生灵活运用数学知识的能力以及数学思想方法掌握的情况。
反比例函数相关的中考试题,讲解分析3:
如图,在平面直角坐标系中,直线AB与x轴交于点B,与y轴交于点A,与反比例函数y=m/x的图象在第二象限交于点C,CE⊥x轴,垂足为点E,tan∠ABO=1/2,OB=4,OE=2.
(1)求反比例函数的解析式;
(2)若点D是反比例函数图象在第四象限上的点,过点D作DF⊥y轴,垂足为点F,连接OD、BF,如果S△BAF=4S△DFO,求点D的坐标.
考点分析:
锐角三角函数——锐角三角函数的求法、平面直角坐标系——利用图形变化确定点的坐标、反比例函数——反比例函数的表达式及反比例函数的图像及性质(k的几何意义)
题干分析:
(1)先由tan∠ABO=CE/BE=1/2及OB=4,OE=2求出CE的长度,从而得到点C的坐标,再将点C的坐标代入y=m/x即可求得反比例函数的解析式.
(2)先由反比例函数y=k/x的k的几何意义得出S△DFO,由S△BAF=4S△DFO得到S△BAF,根据S△BAF=AF•OB/2得出AF的长度,用AF-OA求出OF的长,据此可先得出点D的纵坐标,再求D得横坐标.
解题反思:
要确定反比例函数的表达式,只需根据题目提供的条件求出其图像上某一个点的坐标即可解决;反比例函数系数k的几何意义:在反比例函数y=k/xk≠0)图象上任取一点,过这一个点向x轴和y轴分别作垂线,两垂线与两坐标轴围成的矩形的面积是定值|k|.在反比例函数的图象上任取一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的直角三角形的面积是定值|k|/2,且保持不变.
与反比例函数相关的综合题,渐渐成为近几年各地中考数学的热门题型。在考查意图上,突出对数学思想方法和能力,特别是对思维能力、探究能力、创新能力,综合运用知识能力的考查,同时会考查待定系数法、动点问题、存在型问题、探索型问题、类比型问题等等。