(一)泛函分析(江泽坚)习题解答

本文详细证明了Hilbert空间中正交性质的几个关键定理,包括正交与线性无关的关系,正交的充要条件,以及正交集的相关性质。通过数学推理和符号运算,展示了正交性在Hilbert空间中的重要作用。
摘要由CSDN通过智能技术生成

第二章  Hilbert空间

                                                                                                                                                   


                                                                                                                                                                                                                                      —zwb565055403

1.设$X$是内积空间,$x,y \in X$,试证明:
(i)如果$x$与$y$正交,则$x$与$y$线性无关;
(ii)$x$与$y$正交的充要条件是对任意数$\alpha$,
$$\|x+\alpha y\|=\|x-\alpha y\|$$
(iii) $x$与$y$正交的充要条件是对任意数$\alpha$,
$$||x+\alpha y||\geq ||x||$$
证明:
(i)由题知$(x,y)=(y,x)=0$,不妨设$\lambda_{1}x+\lambda_{2}y=0$,
则有
$$(\lambda_{1}x+\lambda_{2}y,y)=\lambda_{2}(y,y)=0,y\neq 0$$
所以$\lambda_{2}=0$,同理$\lambda_{1}=0$
(ii)由$||x+\alpha y||=||x-\alpha y||$得知其等价于
$$\overline{\alpha}(x,y)+\alpha (y,x)=0$$
故必要性显然,充分性若上式成立分取
$\alpha=1$,有
$$(x,y)+(y,x)=0$$
$\alpha=-i$,有
$$(x,y)-(y,x)=0$$
联立上两式解得$(x,y)=(y,x)=0$
(iii)必要性
$$||x+\alpha y||^{2}=||x||^{2}+|\alpha|^{2}||y||^{2} \geq ||x||^{2}$$
充分性
$$||x+\alpha y|| \geq |||x| \Leftrightarrow| \alpha|^{2}||y||^{2}+\overline{\alpha}(x,y)+\alpha (y,x) \geq 0
$$
取$\alpha$为实数易得
$$(x,y)+(y,x)=0$$
取$\alpha$为纯虚数易得
$$(x,y)-(y,x)=0$$
所以$(x,y)=0$
2.设$\{e_{n}\}$是Hilbert空间H中的正规正交集,则对任意$x,y \in X$,
$$\sum_{n=1}^{\infty}|(x,e_{n})||(y,e_{n})| \leq \|x\| \|y\|$$
证明:
由Cauchy不等式有
$$\sum_{n=1}^{\infty}|(x,e_{n})||(y,e_{n})|^{2}\leq \sum_{n=1}^{\infty}(x,e_{n})^{2}
\sum_{n=1}^{\infty}(y,e_{n})^{2}$$
又$\{e_{n}\}$是Hilbert空间H中的正规正交集,继而由Bessle不等式
$$\sum_{n=1}^{\infty}(x,e_{n})^{2}\sum_{n=1}^{\infty}(y,e_{n})^{2}\leq \|x\|\|y\|$$
3.设$\{e_{n}\}$是Hilbert空间H的正规正交集,
$$x=\sum_{n=1}^{\infty}\alpha_{

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值