根据2个博文的总结
常用的数据分页技术总结:http://www.cnblogs.com/refactor/archive/2012/06/28/2552700.html
网上搜集的几种数据分页的总结 http://www.cnblogs.com/kingboy2008/archive/2011/06/22/2086710.html
http://www.cnblogs.com/builderman/archive/2011/07/19/2110108.html
1.数据分页概述
• 通常在Web页面中,在数据量比较大时,无法在一个页面中显示所有数据
• 在某些特定场景下,并不需要返回所有满足条件的数据
• 从数据的角度看,需要返回指定范围内的数据
2.数据层分页技术
• 在数据库查询时,只查询特定页面的数据
• 主要由T -SQL来完成
• 适用于比较大的数据表
• 优点:返回的结果集小,查询速度快
• 缺点:需要多次查询数据库
3.数据层分页技术-使用临时表
• 在查询数据前,创建一个临时表
• 表的列比要返回的结果集多一个标识列
• 按照特定列排序,将结果插入到临时表中
• 此时,可以按照标识列返回特定页面
CREATE PROCEDURE paging2 @pageNum INT ,@Num INT AS BEGIN SELECT AddressLine1,AddressLine2,City,PostalCode,IDENTITY(int) Num INTO #temp FROM Person.Address ORDER BY AddressID ASC SELECT * FROM #temp WHERE Num<=@Num*@pageNum AND Num> @Num*(@pageNum-1) ORDER BY Num ASC DROP TABLE #temp END EXEC paging2 20,5;--每页五条,第二十页数据 耗时: 1s EXEC paging0 20000,5;--每页五条,第二万页数据 耗时: 1s EXEC paging0 200000,5;--每页五条,第二十万页数据 耗时: 1s
4.数据层分页技术-使用表变量
• 在查询数据前,创建一个表变量
• 表的列比要返回的结果集多一个标识列
• 按照特定列排序,将结果插入到表变量中
• 此时,可以按照标识列返回特定页面
5.数据层分页技术-反复取Top
• 若要按特定列正排序取第91-100 行数据
• 首先,按特定列正排序取Top 100
• 然后,反向排序取Top 10
• 最后,再将结果正排序后返回
create PROCEDURE fenye
(
@pageNum INT
,@Num INT
)
AS
BEGIN
SELECT * from (SELECT TOP (@Num) * FROM
(SELECT TOP (@Num*@pageNum) * FROM Person.Address ORDER BY AddressID asc) b ORDER BY b.AddressID desc
)c ORDER BY c.AddressID asc
END
这个中方法先把数据库中的前@Num*@pageNum条数据取出,再从结果集中取出最后的@Num条数据,当然两个排序规则是不一样的这点很重要,不然起不到分页效果。 你可以具体试一下就明白了。缺点在于获取的页数越多就越慢
看性能
EXEC paging1 2,5;--每页五条,第十页数据 耗时:1s
EXEC paging1 200,5;--每页五条,第200页数据 耗时:1s
EXEC paging1 20000,5;--每页五条,第20000页数据 耗时:1s
EXEC paging1 200000,5;--每页五条,第二十万页数据 耗时: 3s
6.数据层分页技术-使用行号
• 在SQL Server 2005/2008中
• 查询结果集时,添加一个ROW NUMBER() 表示行号 (不懂ROW NUMBER():详见:http://www.cnblogs.com/fxgachiever/archive/2010/09/15/1826792.html)
• 将上述结果集作为子查询,通过ROW_NUMBER() 筛选出特定页面
之所以要改进第三种方式那是因为,Top关键字其实是 已经经过性能优化了的之所以比不过ROW_NUMBER()的执行效率是因为用了两次,那么既然如此,我们何不将二者结合起来使用,效果岂不更佳。那就让我们改进一下吧。 CREATE PROCEDURE paging0 @pageNum INT ,@Num INT AS begin SELECT * FROM ( SELECT TOP (@Num*@pageNum) measurePipe,measureTime,measureCycle,MeasureData, doseRateValue,ROW_NUMBER() OVER(ORDER BY GMpipe.measureTime ASC ) AS NUM FROM GMpipe)A WHERE A.NUM> @Num*(@pageNum-1) ORDER BY A.measureTime desc END Go 看性能 EXEC paging0 20,5;--每页五条,第二十页数据 耗时: 1s EXEC paging0 20000,5;--每页五条,第二万页数据 耗时: 1s EXEC paging0 200000,5;--每页五条,第二十万页数据 耗时: 1s
7.代码如下:
View Code
USE AdventureWorks2008
GO
SELECT COUNT(*) FROM Production.TransactionHistoryArchive
GO
SELECT TOP 50 * FROM Production.TransactionHistoryArchive
ORDER BY ReferenceOrderID ASC
GO
--Use Top*Top
DECLARE @Start datetime,@end datetime;
SET @Start=getdate();
DECLARE @PageNumber INT, @Count INT, @Sql varchar(max);
SET @PageNumber=5000;
SET @Count=10;
SET @Sql='SELECT T2.* FROM (
SELECT TOP 10 T1.* FROM
(SELECT TOP ' + STR(@PageNumber*@Count) +' * FROM Production.TransactionHistoryArchive
ORDER BY ReferenceOrderID ASC) AS T1
ORDER BY ReferenceOrderID DESC) AS T2
ORDER BY ReferenceOrderID ASC';
EXEC (@sql);
SET @end=getdate();
PRINT Datediff(millisecond,@Start,@end);
GO
--USE table value
DECLARE @Start datetime,@end datetime;
SET @Start=getdate();
DECLARE @PageNumber INT, @Count INT, @Sql varchar(max);
SET @PageNumber=5000;
SET @Count=10;
DECLARE @local_variable table (RowNumber int identity(1,1),[TransactionID] [int],
[ProductID] [int],
[ReferenceOrderID] [int],
[ReferenceOrderLineID] [int],
[TransactionDate] [datetime],
[TransactionType] [nchar](1),
[Quantity] [int],
[ActualCost] [money],
[ModifiedDate] [datetime]);
insert into @local_variable (TransactionID, ProductID, ReferenceOrderID, ReferenceOrderLineID, TransactionDate, TransactionType, Quantity, ActualCost, ModifiedDate)
SELECT TOP 50000 TransactionID, ProductID, ReferenceOrderID, ReferenceOrderLineID, TransactionDate, TransactionType, Quantity, ActualCost, ModifiedDate from Production.TransactionHistoryArchive ORDER BY ReferenceOrderID ASC
select * from @local_variable where RowNumber > (@PageNumber-1)*@Count and RowNumber <= @PageNumber*@Count
SET @end=getdate();
PRINT Datediff(millisecond,@Start,@end);
GO
--USE temp table
DECLARE @Start datetime,@end datetime;
SET @Start=getdate();
DECLARE @PageNumber INT, @Count INT, @Sql varchar(max);
SET @PageNumber=5000;
SET @Count=10;
create table #local_variable(RowNumber int identity(1,1),[TransactionID] [int],
[ProductID] [int],
[ReferenceOrderID] [int],
[ReferenceOrderLineID] [int],
[TransactionDate] [datetime],
[TransactionType] [nchar](1),
[Quantity] [int],
[ActualCost] [money],
[ModifiedDate] [datetime]);
insert into #local_variable (TransactionID, ProductID, ReferenceOrderID, ReferenceOrderLineID, TransactionDate, TransactionType, Quantity, ActualCost, ModifiedDate)
SELECT TOP 50000 TransactionID, ProductID, ReferenceOrderID, ReferenceOrderLineID, TransactionDate, TransactionType, Quantity, ActualCost, ModifiedDate from Production.TransactionHistoryArchive ORDER BY ReferenceOrderID ASC
select * from #local_variable where RowNumber > (@PageNumber-1)*@Count and RowNumber <= @PageNumber*@Count
SET @end=getdate();
PRINT Datediff(millisecond,@Start,@end);
GO
--Use ROW_NUMBER
DECLARE @Start datetime,@end datetime;
SET @Start=getdate();
DECLARE @PageNumber INT, @Count INT, @Sql varchar(max);
SET @PageNumber=5000;
SET @Count=10;
SELECT * FROM
( SELECT ROW_NUMBER()
OVER(ORDER BY ReferenceOrderID) AS RowNumber,
*
FROM Production.TransactionHistoryArchive) AS T
WHERE T.RowNumber<=@PageNumber*@Count AND T.RowNumber>(@PageNumber-1)*@Count;
SET @end=getdate();
PRINT Datediff(millisecond,@Start,@end);
GO
8.应用层分页技术(自定义分页方法)
• 在应用层/逻辑层缓存数据,并进行数据的分段显示
• 主要由程序代码完成
• 优点:查询数据库次数少,每次返回结果快
• 缺点:第一次查询慢,占用应用层内存资源
9.应用层分页技术-GridView
• 应用GridView的分页功能
• 启用XxxDataSource 控件的缓存功能
10.应用层分页技术-DataPager
• .NET 3.5 当中的新控件
• 更加灵活定义分页格式
11.应用层分页技术-PagedDataSource 对象分页
• .NET 当中的对象
• 更加灵活定义分页格式,但是代码量特多,不好控制
12.应用层分页技术-LINQ
• 自定义数据绑定
• 使用LINQ 进行查询
• 使用Skip() 和Take() 函数
12.展现层分页技术 (JS,jquery组合成的第三方View控件)
• 在客户端进行数据分页
• 主要通过客户端脚本来实现
• 优点:减少网络传输量,提高带宽利用率
• 缺点:需要编写大量客户端脚本,增加开发与维护成本
13.展现层分页技术-UpdatePanel
• 通过ASP.NET AJAX 中的UpdatePanel 控件,可以将应用层所提供的分页功能转换到客户端
• 无需维护代码
• 充分利用服务器端控件功能
14.展现层分页技术-Data Services
• 使用Data Services所提供的基于URI 的数据访问,可以实现数据分页
• 在展现层,可以直接通过Javascript 进行解析
• 轻量级数据传输格式:XML/JSON
总结
我们再来改变一下每页的条数看看
临时表方式:
EXEC paging2 5000,200;--每页两百条,第五千页数据 耗时:7s
Top语句方式:
EXEC paging1 5000,200;-- 每页两百条,第五千页数据 耗时: 3s
ROW_NUMBER()函数方式:
EXEC paging0 5000,200;--每页五条,第二十万页数据 耗时:1s
另外的SQL分页
SQL Server 存储过程的分页,这个问题已经讨论过几年了,很多朋友在问我,所以在此发表一下我的观点 建立表:
CREATE TABLE [TestTable] ( [ID] [int] IDENTITY (1, 1) NOT NULL , [FirstName] [nvarchar] (100) COLLATE Chinese_PRC_CI_AS NULL , [LastName] [nvarchar] (100) COLLATE Chinese_PRC_CI_AS NULL , [Country] [nvarchar] (50) COLLATE Chinese_PRC_CI_AS NULL , [Note] [nvarchar] (2000) COLLATE Chinese_PRC_CI_AS NULL ) ON [PRIMARY] GO
插入数据:(2万条,用更多的数据测试会明显一些) SET IDENTITY_INSERT TestTable ON
declare @i int set @i=1 while @i<=20000 begin insert into TestTable([id], FirstName, LastName, Country,Note) values(@i, 'FirstName_XXX','LastName_XXX','Country_XXX','Note_XXX') set @i=@i+1 end
SET IDENTITY_INSERT TestTable OFF
-------------------------------------
分页方案一:(利用Not In和SELECT TOP分页) 语句形式:
SELECT TOP 10 * FROM TestTable WHERE (ID NOT IN
(SELECT TOP 20 id FROM TestTable ORDER BY id)) ORDER BY ID
格式形式:
SELECT TOP 页大小 * FROM TestTable WHERE (ID NOT IN
(SELECT TOP 页大小*页数 id-1 FROM 表 ORDER BY id)) ORDER BY ID
-------------------------------------
分页方案二:(利用ID大于多少和SELECT TOP分页) 语句形式:
SELECT TOP 10 * FROM TestTable WHERE (ID >
(SELECT MAX(id) FROM (SELECT TOP 20 id FROM TestTable ORDER BY id) AS T)) ORDER BY ID
格式形式:
SELECT TOP 页大小 * FROM TestTable WHERE (ID > (SELECT MAX(id)
FROM (SELECT TOP 页大小*页数 id-1 FROM 表 ORDER BY id) AS T)) ORDER BY ID
-------------------------------------
分页方案三:(利用SQL的游标存储过程分页)
create procedure XiaoZhengGe @sqlstr nvarchar(4000), --查询字符串
@currentpage int, --第N页
@pagesize int --每页行数
as
set nocount on
declare @P1 int, --P1是游标的id
@rowcount int exec sp_cursoropen
@P1 output,@sqlstr,@scrollopt=1,
@ccopt=1,@rowcount=@rowcount output select ceiling(1.0*@rowcount/@pagesize) as 总页数--,@rowcount as 总行数,@currentpage as 当前页 set @currentpage=(@currentpage-1)*@pagesize+1 exec sp_cursorfetch @P1,16,@currentpage,@pagesize exec sp_cursorclose @P1 set nocount off
其它的方案:
如果没有主键,可以用临时表,也可以用方案三做,但是效率会低。 建议优化的时候,加上主键和索引,查询效率会提高。
通过SQL 查询分析器,显示比较:
我的结论是:
分页方案二:(利用ID大于多少和SELECT TOP分页)效率最高,需要拼接SQL语句
分页方案一:(利用Not In和SELECT TOP分页) 效率次之,需要拼接SQL语句
分页方案三:(利用SQL的游标存储过程分页) 效率最差,但是最为通用
在实际情况中,要具体分析。