量子力学中的测量

随便总结一下,可能有错...
大概分成三个内容,一般测量、投影测量(物理书上常见)、POVM。POVM涉及到的很多东西还搞不太清楚,因为详细讲解它的书都太数学了,不数学的书讲的太笼统,所以只简单带过意思意思。
\(\def\vec#1{\boldsymbol{#1}}\) \(\def\bra#1{\langle#1|}\) \(\def\ket#1{|#1\rangle}\) \(\def\dirac#1#2{\langle#1|#2\rangle}\)

一般测量

一般测量的测量假设是:

测量由一组测量算符\(\{M_m\}\)描述,测量算符须满足完备性方程\[\sum_mM^\dagger_mM_m=I\]这些算符作用到被测状态上,指标\(m\)表示测量可能得到的结果。设测量前的状态为\(\ket{\psi}\),则测得结果\(m\)的概率为\[p(m)=\bra{\psi}M^\dagger_mM_m\ket{\psi}\]测量后系统的状态为\[\frac{M_m\ket{\psi}}{\sqrt{\bra{\psi}M^\dagger_mM_m\ket{\psi}}}\]且完备性方程给出了概率和为\(1\)\[\sum_mp(m)=\sum_m\bra{\psi}M^\dagger_mM_m\ket{\psi}=1\]

以概率\(1\)区分量子状态

区分量子状态的问题是这样叙述的:Alice从一组状态\(\{\ket{\psi_i}\},(i=1,\cdots,n)\)中随机抽出一个发送给Bob,Bob需要确定Alice发给他的状态的指标\(i\).

如果各个量子态\(\{\ket{\psi_i}\},(i=1,\cdots,n)\)是正交的,则Bob可以通过定义一组测量算子\(\{M_i\},(i=0,1,\cdots,n)\)来以概率\(1\)区分所有的量子态。测量算符的定义为:\[M_i=\ket{\psi_i}\bra{\psi_i}\\M_0=\sqrt{I-\sum_{i\neq0}M_i^\dagger M_i}\]注意这里每个测量算符都是半正定的,从而是厄米的,所以可以简单地验证,确实满足完备性方程。这样,设Bob收到的量子态是\(\ket{\psi_j}\)则测得结果\(i\)的概率为\[p(i)=\bra{\psi_j}M_i^\dagger M_m\ket{\psi_j}=\delta_{ij}\]即,发送来\(\ket{\psi_j}\)态,则测得结果为\(j\)的概率为\(1\),也就是说,以概率\(1\)得到正确结果。

如果各量子态\(\{\ket{\psi_i}\},(i=1,\cdots,n)\)不正交,则可以证明不存在一组测量算符能以概率\(1\)区分各量子态。

证明:要证明的是没有测量可以区分非正交的量子态\(\ket{\psi_1}, \ket{\psi_2},\cdots\)使用反证法,假设有测量可以做到这一点:如果状态是\(\ket{\psi_1}\)(或\(\ket{\psi_2},\cdots\)),则测量到\(j\)使得\(f(j)=1\)(或\(f(j)=2,\cdots\))的概率为\(1\),这里\(f(j)=i\)表示测得结果\(j\)根据某个对应法则推断出态的编号是\(i\).
定义\[E_i=\sum\limits_{j:f(j)=i}M^\dagger_jM_j\]则对于抽取出的量子态\(\ket{\psi}\),测量、推断得出是第\(i\)态的概率是\[p(i)=\bra{\psi}E_i\ket{\psi}\]根据假设应该有\[\bra{\psi_i}E_i\ket{\psi_i}=1\]由于\(\sum_iE_i=I\),所以\(\sum_i\bra{\psi_j}E_i\ket{\psi_j}=1\),由算符的半正定性可得\(\bra{\psi_j}E_i\ket{\psi_j}=\delta_{ij}\),进而\(\sqrt{E_i}\ket{\psi_j}=0,(i\neq j)\). 对\(j’\neq j\),设\(\ket{\psi_j}=\alpha\ket{\psi_{j'}}+\beta\ket{\phi}\),其中\(\ket{\phi}\)\(\ket{\psi_{j'}}\)正交,由归一性可知\(|\beta|<1\),进一步就有\(\sqrt{E_j}\ket{\psi_j}=\beta\sqrt{E_j}\ket{\phi}\),由此可知\[\bra{\psi_j}E_j\ket{\psi_j}=|\beta|^2\bra{\phi}E_j\ket{\phi}\leqslant|\beta|^2\sum_i\bra{\phi}E_i\ket{\phi}=|\beta|^2\dirac{\phi}{\phi}=|\beta|^2<1\]与假设矛盾。

投影测量

关于量子力学的物理书上所讲的测量一般都是投影测量。投影测量的测量假设是这样描述的:

投影测量由系统状态空间上的一个代表可观测量的厄米算符\(M\)描述,且具有谱分解\[M=\sum_mmP_m\]其中\(P_m\)是向本征值\(m\)的本征子空间\(M\)上的投影算符,测量的结果对应于本征值\(m\)。对于状态\(\ket{\psi}\),测量得出结果\(m\)的概率为\[p(m)=\bra{\psi}P_m\ket{\psi}\]且测量后状态变为\[\frac{P_m\ket{\psi}}{\sqrt{p(m)}}\]

投影测量是一般测量的特殊情况。对一般测量加上限制条件:1.\(M_m\)是厄米算符,2.\(M_mM_{m'}=M_m\delta_{mm'}\)则得到投影测量(这时,\(M_m\)就相当于\(P_m\),注意投影算子的幂等性)。

\(\def\vec#1{\boldsymbol{#1}}\) \(\def\bra#1{\langle#1|}\) \(\def\ket#1{|#1\rangle}\) \(\def\dirac#1#2{\langle#1|#2\rangle}\)

POVM测量

回顾前面两个不同版本的测量假设,它们都规定了两件事情:1测量到某结果的概率,2测量到某结果后态的变化。在许多测量中,我们只关心测得的结果,而不管测量以后态如何变化(比方说得出测量结果后, 态就扔掉了),这时可以使用POVM测量(positive operator-valued measure,正定算子取值测度)。

在一般测量的背景下,如果定义\[E_m=M^\dagger_mM_m\]则测得结果\(m\)的概率为\[p(m)=\bra{\psi}E_m\ket{\psi}\]且完备性方程变为\(\sum_mE_m=I\),这里的\(\{E_m\}\)称为一个POVM。反过来,假设存在一个POVM\(\{E_m\}\),测得结果\(m\)的概率由上式给出,则定义\(M_m=\sqrt{E_m}\),显然也有\(\sum_m M^\dagger_m M_m=\sum_mE_m=I\),所以\(\{M_m\}\)构成了一般测量。

更一般地可以对POVM下定义(注意,这里不管测量后态如何改变):

如果算符\(\{E_m\}\)满足1.半正定,2完备性\(\sum_mE_m=I\),则说\(\{E_m\}\)是一个POVM,测量出结果\(m\)的概率为\[p(m)=\bra{\psi}E_m\ket{\psi}\]

可以证明,任何一般测量,如果它的测量算符和对应的POVM相同,即\(M_m=M_m^\dagger M_m\),那么该一般测量是投影测量:

证明:已知\(M_m=M_m^\dagger M_m\),两边取厄米共轭,得到\(M^\dagger_m=M^\dagger_mM_m\),即\(M_m^\dagger=M_m\),即\(M_m\)厄米。至此,只要再证明\(M_mM_{m'}=\delta_{mm'}M_m\)即可完成从一般测量到投影测量的退化。再次由\(M_m=M_m^\dagger M_m\)得到\(M_m^2=M_m\),由此可知\(M_m\)幂等。进一步,由完备性方程\(\sum_mM^\dagger_mM_m=I\)得到\(\sum_mM_m=I\),记为\((*)\)式。由\(M_k\)厄米(从而半正定),知其有谱分解\[M_k=\sum_i\lambda_i^{(k)}\ket{i^{(k)}}\bra{i^{(k)}}\]则其平方为\[M_k=\sum_i\lambda_i^{(k)2}\ket{i^{(k)}}\bra{i^{(k)}}\]由幂等性知上面二式相等,因此\(\lambda^{(k)2}=\lambda^{(k)}\),即\(\lambda^{(k)}=1\)\(0\),所以\(M_k\)的谱分解改写为\[M_k=\sum_{i'}\ket{{i'}^{(k)}}\bra{{i'}^{(k)}}\]其中指标\(i'\)代表那些本征值为\(1\)的,上式记为\((**)\)式。由\((*)\)式可得\[\bra{i'^{(k)}}\sum_kM_k\ket{i'^{(k)}}=1\]把求和拆分得\[\bra{i'^{(k)}}\left(\sum_{k'\neq k}M_{k'}+M_k\right)\ket{i'^{(k)}}=1\]又因为\(M_k\ket{i'^{(k)}}=\ket{i'^{(k)}}\)所以得到\[\bra{i'^{(k)}}\sum_{k'\neq k}M_{k'}\ket{i'^{k}}=0\]由于\(M_k\)都是半正定的,所以上式求和为零意味着每一项都为零,综上有\[\bra{i'^{(k)}}M_{k'}\ket{i'^{k}}=\delta_{kk'}\]\(M_{k'}=\sum_{j'}\ket{j'^{(k')}}\bra{j'^{(k')}}\)代入上式得\[\sum_{j'}|\dirac{i'^{(k)}}{j'^{(k')}}|^2=0,(k\neq k')\]求和的每一项都非负,所以有\[\dirac{i'^{(k)}}{j'^{(k')}}=0,(k\neq k')\]所以\[M_kM_{k'}=\left(\sum_{i'}\ket{i'^{(k)}}\bra{i'^{(k)}}\right)\left(\sum_{j'}\ket{j'^{(k')}}\bra{j'^{(k')}}\right)=0,(k\neq k')\]上式结合幂等性,正好是\(M_kM_{k'}=\delta_{kk'}M_k\).

不出错地区分量子态

前面针对正交的各态,说清楚了如何以概率\(1\)正确地区分量子态,即在正交的情况下,不论给我什么态,我总能正确地区分。但是对于不正交的各态,已经证明,不存在一个测量\(\{M_m\}\)总能正确地区分。但是可以设计测量方案,以一定的概率给出正确的答案,而剩下的概率不给出答案(而不是给出错误的答案)。

也就是说,可以构造一个POVM\(\{E_1,E_2,\cdots,E_{m+1}\}\)对于一个从一组线性无关(不一定正交)的态\(\ket{\psi_i},\cdots,\ket{\psi_m}\)中选出的量子态,使得如果测量结果是\(E_i,(i=1,\cdots,m)\)则可以正确地判定选出的状态是\(\ket{\psi_i}\).

这样一来,就要求构造一组\(\{E_i\}\),使得\(\bra{\psi_i}E_i\ket{\psi_i}>0\)\(\bra{\psi_i}E_j\ket{\psi_i}=0,(i\neq j)\). 构造方法是,对每个指标\(i\),在系统的状态空间中选取一个矢量\(\ket{\phi_i}\)满足对所有的\(j\neq i\)\(\dirac{\phi_i}{\psi_j}=0\)\(|\dirac{\phi_i}{\psi_i}|^2>0\). 注意这一点总是可以做到的(如何做到后面说),不论状态\(\ket{\psi_i},\cdots,\ket{\psi_m}\)是否足以张成系统的整个状态空间。在此基础上,对\(i=1,\cdots,m\)定义\(E_i=\ket{\phi_i}\bra{\phi_i}\),和\(E_{m+1}=I-\sum_{i=1}^mE_i\),则既满足不出错的条件,也满足完备性方程。要注意的是\(\bra{\psi_i}E_{m+1}\ket{\psi_i}\)不一定为零,所以进行一次测量有不为零的概率得到结果\(E_{m+1}\),这并不能给出任何关于量子态的判断,因此虽然不出错,但并非总能正确地判断。

现在说如何做到。我们要从\(\{\ket{\psi_i}\}\)得到\(\{\ket{\phi_i}\}\),而要求\(\{\ket{\psi_i}\}\)满足\((1)\dirac{\phi_i}{\phi_j}=\delta_{ij}\), \((2)|\dirac{\phi_i}{\psi_i}|^2>0\), \((3)\) 如果\(i\neq j\)\(\dirac{\phi_i}{\psi_j}=0\). 为此,令\(\ket{\phi'_i}=\ket{\psi_i}-P_i\ket{\psi_i}\),其中\(P_i\)是除了\(\ket{\psi_i}\)以外,其余\(m-1\)个矢量张成的空间的投影算符。这样,可证明\(\ket{\phi'_i}\)满足后两条,且当\(i\neq j\)\(\dirac{\phi'_i}{\phi'_j}=0\)。再令\(\ket{\phi_i}=\frac{1}{\sqrt{\dirac{\phi'_i}{\phi'_i}}}\ket{\phi_i}\),则上面三条都满足。那么,投影算符\(P_i\)怎么构造?可以由除了第\(i\)个矢量的剩余\(m-1\)个矢量经过Gram-Schmidt正交化步骤而得到。

一般测量和投影测量的转化

前面已经说到,附加两个条件(厄米性和正交性),就可以从一般测量退化到投影测量。但是下面定理表明,通过增加一个辅助子系统并对复合系统进行幺正变换,可以使得一般测量完全转化为投影测量。

设系统\(Q\)上有一般测量\(\{M_m\}\)。再此基础上引入假想的辅助系统\(R\),该系统上有一组标准正交基\(\ket{m}\),正好与\(Q\)上能测得的结果一一对应。把辅助子系统中的任一状态记为\(\ket{0}\),把\(Q\)中待测量的态记为\(\ket{\psi}\),则复合系统的态为\(\ket{\psi}\ket{0}\)。由于系统\(Q\)上的测量算符已知,为\(\{M_m\}\),据此定义一个幺正算符\(U\)如下\[U:\quad\ket{\psi}\ket{0}{\rightarrow}\sum_mM_m\ket{\psi}\ket{m}\]该幺正算符定义在复合系统的态空间上,但只在诸如\(\ket{\psi}\ket{0}\)态上是非平凡的(\(\ket{\psi}\)取遍\(Q\)的态空间,而\(\ket{0}\)固定),由测量算符\(\{M_m\}\)的完备性方程,可验证该算符确实是幺正的。

在进行幺正变换后,对复合系统进行由投影算符\(P_m=I_Q\otimes\ket{m}\bra{m}\)定义的投影测量,依据投影测量假设,测得结果\(m\)的概率为\[p(m)=\sum_i\sum_j\bra{i}\bra{\psi}M_i^\dagger P_mM_j\ket{\psi}\ket{j}\]注意上式中\(P_m=I_Q\otimes\ket{m}\bra{m}\)\(M_i\)只定义在\(Q\)的态空间上,上式等于\[p(m)=\bra{\psi}M_m^\dagger M_m\ket{\psi}\]这正好是一般测量假设中的两条内容之一。再次依照投影测量的假设,测量的出结果\(m\)后,系统的态为\[\frac{P_m\sum_iM_i\ket{\psi}\ket{i}}{\sqrt{\bra{\psi}M_m^\dagger M_m\ket{\psi}}}=\frac{M_m\ket{\psi}\ket{m}}{\sqrt{\bra{\psi}M_m^\dagger M_m\ket{\psi}}}\]上面的态是一个直积态,对\(Q\)系统而言是态\[\frac{M_m\ket{\psi}}{\sqrt{\bra{\psi}M_m^\dagger M_m\ket{\psi}}}\]正好是一般测量假设中的另一条内容。

因此通过附加辅助系统,并加以幺正变换,可以用投影测量来达到一般测量,这个结论好像叫做Neumark扩张定理。

\(\def\vec#1{\boldsymbol{#1}}\)
\(\def\bra#1{\langle#1|}\)
\(\def\ket#1{|#1\rangle}\)
\(\def\dirac#1#2{\langle#1|#2\rangle}\)

转载于:https://www.cnblogs.com/immcrr/p/10348430.html

  • 0
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
量子力学五大公社是量子力学的基本原则,它们描述了量子系统的性质和行为,提供了一种数学表示方式,使得我们能够理解和预测量子系统的行为。以下是对五大公社的更详细解释。 1. 状态空间公理 状态空间公理指出,量子态可以用Hilbert空间的向量表示。Hilbert空间是一个数学上的概念,它是一个无限维的向量空间,具有内积和范数的性质。在量子力学,我们将量子态表示为Hilbert空间的向量,这个向量称为态矢量。态矢量可以用来计算各种可观测量的期望值和概率等物理量。 2. 观测公理 观测公理指出,观测会导致量子态的坍塌,使得测量结果成为一个确定值。在量子力学,我们不能确定粒子的位置和动量等物理量,而只能得到它们的概率分布。当我们对一个量子系统进行测量时,它的量子态会坍塌成一个确定值,并且我们只能得到这个值的某个可能性。这个公理描述了量子力学测量的本质。 3. 动力学公理 动力学公理指出,量子系统的演化可以通过Schrödinger方程描述。Schrödinger方程是描述量子系统时间演化的基本方程。在量子力学,我们用态矢量来描述量子系统的状态,而Schrödinger方程描述了这个态矢量随时间的演化规律。这个公理描述了量子系统在时间演化的行为。 4. 统计公理 统计公理指出,量子力学测量结果是概率性的,概率由Born规则给出。Born规则是一条非常重要的规则,它描述了在量子力学如何计算测量结果的概率。根据Born规则,测量结果的概率等于态矢量在相应本征态上的投影的模长的平方。这个公理解释了量子力学概率的来源。 5. 可观测量公理 可观测量公理指出,可观测量是由Hermitian算符表示的,其本征值是测量结果的可能取值。在量子力学,可观测量是能够被测量的物理量,如位置、动量和自旋等。根据这个公理,我们可以用Hermitian算符来表示可观测量,并且它的本征值是测量结果的可能取值。这个公理解释了量子力学可观测量的数学表示方式。 总的来说,量子力学五大公社是量子力学理论框架的基础,描述了量子系统的性质和行为,并提供了一种数学表示方式。这种表示方式与经典物理学的表示方式非常不同,因为量子力学的粒子和系统具有非常奇特的性质。这些公理的理解对于深入了解量子力学以及应用量子力学在各个领域都非常重要。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值