Zero Knowledge Proof 解密 QAP

本文的内容来自于V神的博客文章,再加上一些自己的理解。验证代码在https://github.com/ethereum/research/blob/master/zksnark/

零知识的证明逻辑需要花很多篇幅仔细介绍,涉及到QAP,KCA,Groth16,同态隐藏,双线性映射等。这篇文章主要介绍quadratic arithmetic program(QAP)。

16385914-add3e80da96aaf00.png

ZK-snark不能直接拿来应用,我们必须把原始数据转换成适合ZK-snark处理的方式。以如下的3次方等式为例:

x**3 + x + 5 == 35 (答案是 3)

编程Python程序如下:

def qeval(x):

    y = x**3

    return x + y + 5

扁平化展开

上面的2元3次方程可以展开为:【1】

sym_1 = x * x

y = sym_1 * x

sym_2 = y + x

~out = sym_2 + 5

R1CS转换

rank-1 constraint system (R1CS) 是一个(a.b.c)的3个向量,R1CS的解答是一个向量S,满足s . a * s . b - s . c = 0, 此处 . 代表相应位置的乘法,然后再将乘法的结果相加,随后,对b 和s ,以及 c 和 s做同样的操作。

16385914-f9a56b71cb27b8bc.png

S.a=(1×5 +3×0 +35×0 + 9×0 + 27 ×0 + 30 ×1) =35 

S.b=(1×1 + 3×0 +35×0+9×0+27×0+30×0)=1

S.c=(1×0 +3×0 + 35×1 + 9×0+27×0+30×0)=35

显然上面的S向量(1,3,35,9,27,30)就是上述二元3次方程的一个解

为了规范化,我们加了一个哑元'~one',以及中间变量'sym_1',  'sym_2',向量变成下面这样:

'~one', 'x', '~out', 'sym_1', 'y', 'sym_2'

第一个门:

a = [0, 1, 0, 0, 0, 0]

b = [0, 1, 0, 0, 0, 0]

c = [0, 0, 0, 1, 0, 0]

上面的(a,b,c)矢量组表示下面的语句:s.a*s.b-s.c=0

sym_1 = x * x

同理:

a = [0, 0, 0, 1, 0, 0]

b = [0, 1, 0, 0, 0, 0]

c = [0, 0, 0, 0, 1, 0]

代表:

sym_1 * x = y

上面的语句来自【1】

sym_1 = x * x

y = sym_1 * x

sym_2 = y + x

~out = sym_2 + 5

上面语句的完整的R1CS如下:【2】

A

[0, 1, 0, 0, 0, 0]

[0, 0, 0, 1, 0, 0]

[0, 1, 0, 0, 1, 0]

[5, 0, 0, 0, 0, 1]

B

[0, 1, 0, 0, 0, 0]

[0, 1, 0, 0, 0, 0]

[1, 0, 0, 0, 0, 0]

[1, 0, 0, 0, 0, 0]

C

[0, 0, 0, 1, 0, 0]

[0, 0, 0, 0, 1, 0]

[0, 0, 0, 0, 0, 1]

[0, 0, 1, 0, 0, 0]

下面利用拉格朗日插值来把R1CS编成QAP

拉格朗日插值

学过数值分析的应该很容易理解,对于一列坐标:(x0,y0),(x1,y1)...(xi,yi),可以通过拉格朗日插值,找到一个多项式,它通过这个坐标序列里的每一个点。具体的方法是:

 对于(x0,y0), 我们找到一个多项式,在x1,x2....xi处,y1,y2,..yi均为零。这样的多项式很容易找,比如,下面就是一个例子:

y= (x-x1)(x-x2)...(x-xi)

举个例子,比如有3个点:(1, 3), (2, 2) 和(3, 4)。

    - 首先我们找到通过(1, 3), (2, 0)和 (3, 0)的多项式。

    - 其次我们找到通过(1, 0), (2, 2)和 (3, 0)的多项式。

    - 再次我们找到通过(1, 0), (2, 0)和 (3, 4)的多项式。

    - 最后,我们把上面得到的多项式加起来就是通过这三个点的多项式

 

我们用拉格朗日插值来变换上面的【2】

程序如下

#Assumes vec[0] = p(1), vec[1] = p(2), etc, tries to find p,

#expresses result as [deg 0 coeff, deg 1 coeff...]

def lagrange_interp(vec):

    o=[]

    for i in range (len(vec)):

        o=add_polys(o, mk_singleton(i+1, vec[i],len(vec)))

    for i in range(len(vec)):

        assert abs(eval_poly(o, i+1)-vec[i]<10**-10), (o, eval_poly(o, i+1), i+1)

    return o

 

def transpose(matrix):

    return list(map(list,zip(*matrix)))

 

#A, B, C = matrices of m vectors of length n, where for each

#0 <= i < m, we want to satisfy A[i] * B[i] - C[i] = 0

def r1cs_to_qap(A,B,C):

    A, B, C=transpose(A), transpose(B), transpose(C)

    new_A=[lagrange_interp(a) for a in A]

    new_B=[lagrange_interp(b) for b in B]

    new_C=[lagrange_interp(c) for c in C]

    Z=[1]

    for i in range(1,len(A[0])+1):

        Z=multiply_polys(Z, [-i,1])

    return(new_A, new_B, new_C, Z)

結果如下

A 多项式

[-5.0, 9.166, -5.0, 0.833]

[8.0, -11.333, 5.0, -0.666]

[0.0, 0.0, 0.0, 0.0]

[-6.0, 9.5, -4.0, 0.5]

[4.0, -7.0, 3.5, -0.5]

[-1.0, 1.833, -1.0, 0.166]

B 多项式

[3.0, -5.166, 2.5, -0.333]

[-2.0, 5.166, -2.5, 0.333]

[0.0, 0.0, 0.0, 0.0]

[0.0, 0.0, 0.0, 0.0]

[0.0, 0.0, 0.0, 0.0]

[0.0, 0.0, 0.0, 0.0]

C 多项式

[0.0, 0.0, 0.0, 0.0]

[0.0, 0.0, 0.0, 0.0]

[-1.0, 1.833, -1.0, 0.166]

[4.0, -4.333, 1.5, -0.166]

[-6.0, 9.5, -4.0, 0.5]

[4.0, -7.0, 3.5, -0.5]

 

附录

拉格朗日的定义和证明可以参看这里这里

转载于:https://my.oschina.net/gavinzheng731/blog/3032170

Python中,使用`networkx`库可以方便地创建和绘制UCINET(用于社会网络分析)中常见的QAP(Quantitative Analysis of Network)相关矩阵图。UCINET通常涉及结构洞理论等社会网络分析,而QAP矩阵包含节点之间的定量数据,如距离、相似度等。 首先,你需要安装必要的库,包括`networkx`和`matplotlib`。如果你还没有安装,可以使用`pip install networkx matplotlib`命令来安装。 以下是一个简单的步骤示例: 1. 导入所需库: ```python import networkx as nx import matplotlib.pyplot as plt ``` 2. 创建一个简单的QAP矩阵,这里我们用随机数据代替实际的定量数据: ```python # 假设你的QAP矩阵是一个二维数组,例如大小为n x n qap_matrix = [[0] * n for _ in range(n)] # 需要替换为实际的数据 ``` 3. 将QAP矩阵转换为nx.Graph或nx.DiGraph(有向图),这取决于数据的性质: ```python if is_directed: # 如果数据是无向的,则使用nx.Graph G = nx.from_numpy_array(qap_matrix) else: G = nx.from_numpy_matrix(qap_matrix, create_using=nx.DiGraph()) ``` 4. 计算并设置节点的颜色或大小基于QAP矩阵中的值: ```python node_colors = [G[u][v]['weight'] for u, v in G.edges()] # 可能需要根据实际QAP矩阵调整 ``` 5. 绘制图形,使用`cmap`指定颜色映射: ```python pos = nx.spring_layout(G) # 使用布局算法对节点位置进行计算 plt.figure(figsize=(8, 6)) nx.draw_networkx_nodes(G, pos, node_color=node_colors, cmap='coolwarm', node_size=500) nx.draw_networkx_edges(G, pos, width=1, alpha=0.5) plt.colorbar(label='QAP Value') plt.title('UCINET QAP相关矩阵图') plt.show() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值