1143: [CTSC2008]祭祀river
Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1878 Solved: 937
[Submit][Status][Discuss]
Description
在遥远的东方,有一个神秘的民族,自称Y族。他们世代居住在水面上,奉龙王为神。每逢重大庆典, Y族都会在水面上举办盛大的祭祀活动。我们可以把Y族居住地水系看成一个由岔口和河道组成的网络。每条河道连接着两个岔口,并且水在河道内按照一个固定的方向流动。显然,水系中不会有环流(下图描述一个环流的例子)。
由于人数众多的原因,Y族的祭祀活动会在多个岔口上同时举行。出于对龙王的尊重,这些祭祀地点的选择必须非常慎重。准确地说,Y族人认为,如果水流可以从一个祭祀点流到另外一个祭祀点,那么祭祀就会失去它神圣的意义。族长希望在保持祭祀神圣性的基础上,选择尽可能多的祭祀的地点。
Input
第一行包含两个用空格隔开的整数N、M,分别表示岔口和河道的数目,岔口从1到N编号。接下来M行,每行包含两个用空格隔开的整数u、v,描述一条连接岔口u和岔口v的河道,水流方向为自u向v。
Output
第一行包含一个整数K,表示最多能选取的祭祀点的个数。
Sample Input
4 4
1 2
3 4
3 2
4 2
1 2
3 4
3 2
4 2
Sample Output
2
【样例说明】
在样例给出的水系中,不存在一种方法能够选择三个或者三个以上的祭祀点。包含两个祭祀点的测试点的方案有两种:
选择岔口1与岔口3(如样例输出第二行),选择岔口1与岔口4。
水流可以从任意岔口流至岔口2。如果在岔口2建立祭祀点,那么任意其他岔口都不能建立祭祀点
但是在最优的一种祭祀点的选取方案中我们可以建立两个祭祀点,所以岔口2不能建立祭祀点。对于其他岔口
至少存在一个最优方案选择该岔口为祭祀点,所以输出为1011。
【样例说明】
在样例给出的水系中,不存在一种方法能够选择三个或者三个以上的祭祀点。包含两个祭祀点的测试点的方案有两种:
选择岔口1与岔口3(如样例输出第二行),选择岔口1与岔口4。
水流可以从任意岔口流至岔口2。如果在岔口2建立祭祀点,那么任意其他岔口都不能建立祭祀点
但是在最优的一种祭祀点的选取方案中我们可以建立两个祭祀点,所以岔口2不能建立祭祀点。对于其他岔口
至少存在一个最优方案选择该岔口为祭祀点,所以输出为1011。
HINT
对于每个测试点:如果你仅输出了正确的被选取的祭祀点个数,那么你将得到该测试点30%的分数;如果你仅输出了正确的被选取的祭祀点个数与一个可行的方案,那么你将得到该测试点60%的分数;如果你的输出完全正确,那么你将得到该测试点100%的分数
【数据规模】 N ≤ 100 M ≤ 1 000
Source
题解:
这道题转化一下,就成了我们要找最大独立集。
最大独立集=二分图点数-最小点覆盖=最长反链长度=最小链覆盖(路径不能相交)
链为一些点的集合,链上任意两点x,y, 要么x能到达y,要么y能到达x。
反链为一些点的集合,链上任意两点x,y, x不能到达y且y不能到达x。
然后我们就跑个传递闭包,把x能到达y的处理出来。
然后重新构图,将x能到达y的连起来。跑个最大匹配,再用总点数减去最大匹配数即可。。。
Dinic和匈牙利 都可以过。。。
我写的是匈牙利:
1 #include<bits/stdc++.h> 2 using namespace std; 3 bitset<110> a[110]; 4 bitset<110> vis; 5 int bf[110],n,f[110][110]; 6 int read() 7 { 8 int s=0,fh=1;char ch=getchar(); 9 while(ch<'0'||ch>'9'){if(ch=='-')fh=-1;ch=getchar();} 10 while(ch>='0'&&ch<='9'){s=s*10+(ch-'0');ch=getchar();} 11 return s*fh; 12 } 13 int xyl(int u) 14 { 15 int v; 16 for(v=1;v<=n;v++) 17 { 18 if(a[u][v]!=0&&vis[v]==0) 19 { 20 vis[v]=1; 21 if(xyl(bf[v])==1||bf[v]==0) 22 { 23 bf[v]=u; 24 return 1; 25 } 26 } 27 } 28 return 0; 29 } 30 int main() 31 { 32 int m,i,j,x,y,ans; 33 n=read();m=read(); 34 //for(i=1;i<=n;i++)a[i][i]=1; 35 for(i=1;i<=m;i++) 36 { 37 x=read();y=read(); 38 a[x][y]=1; 39 } 40 for(i=1;i<=n;i++) 41 { 42 for(j=1;j<=n;j++) 43 { 44 if(a[j][i])a[j]|=a[i]; 45 } 46 } 47 /*for(i=1;i<=n;i++) 48 { 49 for(j=1;j<=n;j++) 50 { 51 if(a[i][j]&&i!=j)f[i][j]=1; 52 } 53 }*/ 54 memset(bf,0,sizeof(bf)); 55 ans=0; 56 for(i=1;i<=n;i++) 57 { 58 vis.reset(); 59 ans+=xyl(i); 60 } 61 printf("%d",n-ans); 62 fclose(stdin); 63 fclose(stdout); 64 return 0; 65 }