bzoj1143: [CTSC2008]祭祀river

传送门
小伙子,看到ctsc不要虚。
首先N^3floyed暴力求出两点之间联通关系。
按照联通关系建新图。
要求两两无边。
在新图上跑二分图匹配求出最大独立集。
原理:
二分图最小点覆盖(每条边至少一个顶点在集合里)=最大匹配
二分图最小边覆盖(每个点至少连一条边)=二分图点数-最大匹配
证明:考虑最大匹配后,每个未匹配的点连出一条边,即为最小边覆盖=二分图点数-2*最大匹配+最大匹配=二分图点数-最大匹配。
二分图最大独立集(点两两无边)=二分图点数-最小点覆盖=二分图点数-最大匹配。
二分图匹配用匈牙利算法,N^3不虚。

#include<cstdio>
#include<cmath>
#include<ctime>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
int f[105][105],v[105],b[105],n,m,x,y,ans;
int dfs(int x){
    for (int i=1;i<=n;i++)
        if (f[x][i]&&!v[i]){
            v[i]=1;
            if (!b[i]||dfs(b[i])){
                b[i]=x;
                return 1;
            }
        }
    return 0;
}//匈牙利算法
int main(){
    scanf("%d%d",&n,&m);
    for (int i=1;i<=m;i++){
        scanf("%d%d",&x,&y);
        f[x][y]=1;
    }
    for (int k=1;k<=n;k++)
        for (int i=1;i<=n;i++)
            for (int j=1;j<=n;j++)
                f[i][j]|=f[i][k]&f[k][j];
    for (int i=1;i<=n;i++) f[i][i]=0;
    ans=n;
    for (int i=1;i<=n;i++){
        memset(v,0,sizeof(v));
        if (dfs(i)) ans--;
    }
    printf("%d",ans);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值