传送门
小伙子,看到ctsc不要虚。
首先N^3floyed暴力求出两点之间联通关系。
按照联通关系建新图。
要求两两无边。
在新图上跑二分图匹配求出最大独立集。
原理:
二分图最小点覆盖(每条边至少一个顶点在集合里)=最大匹配
二分图最小边覆盖(每个点至少连一条边)=二分图点数-最大匹配
证明:考虑最大匹配后,每个未匹配的点连出一条边,即为最小边覆盖=二分图点数-2*最大匹配+最大匹配=二分图点数-最大匹配。
二分图最大独立集(点两两无边)=二分图点数-最小点覆盖=二分图点数-最大匹配。
二分图匹配用匈牙利算法,N^3不虚。
#include<cstdio>
#include<cmath>
#include<ctime>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
int f[105][105],v[105],b[105],n,m,x,y,ans;
int dfs(int x){
for (int i=1;i<=n;i++)
if (f[x][i]&&!v[i]){
v[i]=1;
if (!b[i]||dfs(b[i])){
b[i]=x;
return 1;
}
}
return 0;
}//匈牙利算法
int main(){
scanf("%d%d",&n,&m);
for (int i=1;i<=m;i++){
scanf("%d%d",&x,&y);
f[x][y]=1;
}
for (int k=1;k<=n;k++)
for (int i=1;i<=n;i++)
for (int j=1;j<=n;j++)
f[i][j]|=f[i][k]&f[k][j];
for (int i=1;i<=n;i++) f[i][i]=0;
ans=n;
for (int i=1;i<=n;i++){
memset(v,0,sizeof(v));
if (dfs(i)) ans--;
}
printf("%d",ans);
return 0;
}