关于博弈论中的一硬币正反问题的分析

本文探讨了一个与纳什均衡相关的博弈论问题:一位美女提出与陌生人玩硬币游戏,根据硬币正反面的组合决定胜负。通过分析,发现双方需采取策略而非随机出招。美女的最佳策略是让自己的硬币正反面出现概率在1/3到2/5之间,以确保始终有正收益。通过R语言进行图形分析,揭示了游戏中策略的微妙平衡和最优解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  前两天在看一个纳什均衡的词语时在网上搜索发现一个问题如下

你正在图书馆坐着,一位陌生美女主动过来和你搭讪,并要求和你一起玩个数学游戏。美女提议:“让我们各自亮出硬币的一面,或正或反。如果我们都是正面,那么我给你3元,如果我们都是反面,我给你1元,剩下的情况你给我2元就可以了。”那么该不该和这位姑娘玩这个游戏呢?这基本是废话,当然该。问题是,这个游戏公平吗?

  我们分析的主要不是为了答不答应玩的问题,这个当然是要玩了,难得有美女主动搭讪。

  在分析这个问题之前先说一下纳什,一个数学天才,获得诺贝儿经济学奖,纳什均衡这一词语普遍存在于博弈论,经济学等著作中。他的一生都是一个传奇,今年的关注是由于网上的提示,今年5月23日纳什夫妇死于车祸,但他的理论和他为社会做出的巨大贡献永远流传于世。

  先现看一下网上的(我认为模棱两可)分析,上面的收益如下

(美女\男子) 正 反
正 (-3,+3) (+2,-2)
反 (+2,-2) (-1,+1)

  先来一下不靠普的想法,也就是用我们平时学的概率来分析,出现正正,正反,反正,反反都为1/4的概率,所以男子收益E(男)=3*1/4+1*1/4+(-2)*1/2=0,这样子来看很公平的游戏啊。两方不输不赢。
  再来分析一下,这里就是为什么说这个问题与纳什

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值