法法round(雾
题意:给一个序列$a_{1\cdots n}$,定义$\begin{align*}f=\sum\limits_{i=1}^{n-1}\left|a_i-a_{i+1}\right|\end{align*}$,修改是区间加,询问$(l,r,x)$表示把某个$a_i(i\in[l,r])$加上$x$后最大的$f$是多少
先考虑把某个$a_i$加上$x$后对$f$的影响,不失一般性,我们假设$a_{i-1}\leq a_{i+1}$,那么对$a_i$的大小分类讨论,有三种情况
①$a_i\leq a_{i-1},a_i\leq a_{i+1}$,我们不希望找到这样的位置,因为$f$有可能变小,实际上当$l\neq r$时$a_{l\cdots r}$不会全是这种情况(所有$a_i$都比它两边的元素小,矛盾),所以直接忽略即可(当$l=r$时还是要特殊处理的)
②$a_{i-1}\leq a_i\leq a_{i+1}$,$f$可能变大,变化量为$2(x+a_i-a_{i+1})$
③$a_i\geq a_{i+1},a_i\geq a_{i-1}$,$f$一定会变大,变化量为$2x$
所以我们先把原序列差分:$d_i=a_i-a_{i-1}$,然后在线段树的下标为$i$的位置存$\min(d_i,0)+\min(-d_{i+1},0)$,每次查询$[l,r]$的最大值$mx$,那么$\max(0,2(x+mx))$就是$f$的增量
取$\min$对应着③,如果没有③,我们找到的是最小的$|a_i-\max(a_{i-1},a_{i+1})|$,这使得$f$增量最大,最后还要和$0$取$\max$是因为$f$可能不变(即这个区间任何一个数加上$x$都不会变成③)
因为做了差分,所以区间修改就变成单点修改了,修改$d_l,d_{r+1}$和线段树中的$l-1,l,r,r+1$即可
#include<stdio.h>
typedef long long ll;
const ll inf=9223372036854775807ll;
ll max(ll a,ll b){return a>b?a:b;}
ll min(ll a,ll b){return a<b?a:b;}
ll abs(ll x){return x>0?x:-x;}
ll d[300010],mx[1200010];
int M;
ll num(int i){
return min(d[i],0)+min(-d[i+1],0);
}
void pushup(int x){mx[x]=max(mx[x<<1],mx[x<<1|1]);}
ll query(int s,int t){
ll res=-inf;
for(s+=M-1,t+=M+1;s^t^1;s>>=1,t>>=1){
if(~s&1)res=max(res,mx[s^1]);
if(t&1)res=max(res,mx[t^1]);
}
return res;
}
void modify(int x){
mx[x+M]=num(x);
for(x=(x+M)>>1;x;x>>=1)pushup(x);
}
int main(){
int n,m,i,op,l,r,x;
ll sum;
scanf("%d",&n);
for(M=1;M<n;M<<=1);
for(i=1;i<=n;i++)scanf("%I64d",d+i);
for(i=n;i>0;i--)d[i]-=d[i-1];
d[1]=0;
sum=0;
for(i=2;i<=n;i++)sum+=abs(d[i]);
for(i=M;i<M<<1;i++)mx[i]=-inf;
for(i=1;i<=n;i++)mx[i+M]=num(i);
for(i=M-1;i>0;i--)pushup(i);
scanf("%d",&m);
while(m--){
scanf("%d%d%d%d",&op,&l,&r,&x);
if(op==1){
if(l==r)
printf("%I64d\n",sum-abs(d[l])+abs(d[l]+x)-abs(d[l+1])+abs(d[l+1]-x));
else
printf("%I64d\n",sum+max(0,2*(x+query(l,r))));
}else{
if(l>1)sum-=abs(d[l]);
d[l]+=x;
if(l>1)sum+=abs(d[l]);
modify(l);
if(l>1)modify(l-1);
if(r<n){
sum-=abs(d[r+1]);
d[r+1]-=x;
sum+=abs(d[r+1]);
modify(r+1);
modify(r);
}
}
}
}