java 虹软ArcFace 2.0,java SDK使用-进行人脸检测

本文介绍使用虹软ArcFace SDK进行人脸识别的过程,包括人脸检测、属性识别等核心功能。通过示例代码展示了如何加载图片、检测人脸并绘制矩形框标记人脸位置。

虹软产品地址:http://ai.arcsoft.com.cn/product/arcface.html 虹软ArcFace功能简介

人脸检测 人脸跟踪 人脸属性检测(性别、年龄) 人脸三维角度检测 人脸对比

示例代码说明,其中图片操作部分用到了javacv,javacv中针对opencv进行了一些封装,可以很好的对图片进行处理。此处主要用到了opencv的几个函数

加载图片
IplImage img = cvLoadImage("e:/pic/g5.jpg");
格式转换,将IplImage 转为Mat,
OpenCVFrameConverter.ToMat converterToMat = new OpenCVFrameConverter.ToMat();
Mat mat = converterToMat.convert(converterToMat.convert(img));

对图片,增加矩形框,此处用来圈出人脸的位置
rectangle(mat, new Rect(mrect.left,mrect.top,mrect.right-mrect.left,mrect.bottom-mrect.top), new Scalar(0, 255, 0, 1));

将mat数据,写入图片文件中
imwrite("e:/pic/detected.jpg", mat);

示例代码如下:

package com.arcsoft.face;

import static org.bytedeco.javacpp.opencv_imgcodecs.cvLoadImage;
import static org.bytedeco.javacpp.opencv_imgcodecs.imwrite;
import static org.bytedeco.javacpp.opencv_imgproc.rectangle;

import org.bytedeco.javacpp.BytePointer;
import org.bytedeco.javacpp.opencv_core.IplImage;
import org.bytedeco.javacpp.opencv_core.Mat;
import org.bytedeco.javacpp.opencv_core.Rect;
import org.bytedeco.javacpp.opencv_core.Scalar;
import org.bytedeco.javacv.OpenCVFrameConverter;

import com.sun.jna.NativeLong;
import com.sun.jna.Pointer;
import com.sun.jna.ptr.PointerByReference;

public class FaceDetectTest {

    public static void main(String[] args) {
        FaceEngine ins = FaceEngine.INSTANCE;
        
        //SDK激活
        ins.ASFActivation("6iYHk9hRsCNBJvFY7qhpaxnmmpFPnjWWpboYSafaz5hN", "GRwuiEVRTyeRUCHyihMP1B8Xf59zsQBtdZSbeQtfWWhg");
        PointerByReference phEngine = new PointerByReference();
        
        //SDK初始化,需要设置模式是video,还是image,配置人脸检测的角度,engine需要支持的功能 mask,最大支持的人脸数量50,人脸大小16
        int mask = FaceEngine.ASF_FACE_DETECT | FaceEngine.ASF_FACERECOGNITION | FaceEngine.ASF_AGE | FaceEngine.ASF_GENDER | FaceEngine.ASF_FACE3DANGLE;
        NativeLong ret = ins.ASFInitEngine(FaceEngine.ASF_DETECT_MODE_IMAGE, OrientPriority.AFD_FSDK_OPF_0_ONLY, 16,50, mask, phEngine);
         if (ret.longValue() != FaceEngine.MOK) {
             System.out.println(ret.longValue());
         }
         
         //获取图片数据,此处使用javacv中封装的对应opencv的方法完成
         IplImage img = cvLoadImage("e:/pic/g5.jpg");
         BytePointer bp = img.arrayData();
         byte[] imgData = new byte[img.arraySize()];//图片数据
         bp.get(imgData);
         
         //获得engine对应的指针
         Pointer hEngine = phEngine.getValue();
         
         //当前系统版本
         Version version = ins.ASFGetVersion(hEngine);
         System.out.println(version.Version);
         System.out.println(version.CopyRight);
         System.out.println(version.BuildDate);
         
         //进行人脸检测,detectedFaces为输出项
         MultiFaceInfo  detectedFaces = new MultiFaceInfo();
         ins.ASFDetectFaces(hEngine, img.width(), img.height(), ASVL_COLOR_FORMAT.ASVL_PAF_RGB24_B8G8R8,imgData, detectedFaces);
         
         System.out.println("detected face num:"+detectedFaces.faceNum);
         
         //使用opencv的api对照片进行处理,将人脸区域画出来,保存为一张新图片
         OpenCVFrameConverter.ToMat converterToMat = new OpenCVFrameConverter.ToMat();
         Mat mat = converterToMat.convert(converterToMat.convert(img));
         MRECT[] rects = detectedFaces.getFaceRects();
         for (MRECT mrect : rects) {
             rectangle(mat, new Rect(mrect.left,mrect.top,mrect.right-mrect.left,mrect.bottom-mrect.top), new Scalar(0, 255, 0, 1));
        }
        imwrite("e:/pic/detected.jpg", mat);
    }

}

待做人脸检测的图片

在这里插入图片描述

程序识别后,并标识出人脸位置后,效果看起来很棒 在这里插入图片描述

再找一张人脸特别多的图片,准确圈出所有人脸位置 在这里插入图片描述

使用已经封装好的SDK进行人脸识别 https://www.jianshu.com/p/96636db03792

使用已经封装好的SDK进行人脸识别【人脸特征提取比对】 https://www.jianshu.com/p/ab64464571da

虹软ArcFace 2.0,java SDK使用、人脸信息识别(年龄、性别) https://www.jianshu.com/p/cfe90f82be97

转载于:https://my.oschina.net/u/3970172/blog/3029546

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值