排序:
默认
按更新时间
按访问量

Ubuntu 14.04 64位上配置JDK操作步骤

1. 从  http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html  下载jdk-8u172-linux-x64.tar.gz;2. 解压缩:tar -xvzf jdk-8u172-li...

2018-05-22 22:56:39

阅读数:31

评论数:0

Shell脚本示例代码

#! /bin/bash # echo和printf的用法 # echo是用于终端打印的基本命令.在默认情况下,echo在每次调用后会添加一个换行符 echo "hello, beijing" echo "$(pwd)" ...

2018-05-11 19:11:14

阅读数:231

评论数:1

吴恩达老师深度学习视频课笔记:卷积神经网络

        计算机视觉:包括图像分类(image classification)、目标检测(object detection)、风格迁移(neural style transfer)等等。        边缘检测示例:神经网络的前几层可以检测边缘,然后后面几层可能检测到物体的部分,接下来靠后的...

2018-05-10 09:28:00

阅读数:158

评论数:0

Linux下通过gettimeofday函数获取程序段执行时间

        在Linux下计算某个程序段执行的时间一般使用gettimeofday函数,此函数的声明在sys/time.h文件中。此函数接收两个结构体参数,分别为timeval、timezone.        两个结构体的声明如下:struct timeval { time_t tv...

2018-05-01 22:29:21

阅读数:178

评论数:0

Linux下遍历指定目录的C++实现

        之前在 https://blog.csdn.net/fengbingchun/article/details/51474728 给出了在Windows遍历指定文件夹的C++实现,这里给出在Linux下遍历目录的实现,Windows和Linux下的实现都是参考了OpenCV 2.x中...

2018-05-01 11:03:49

阅读数:232

评论数:4

Ubuntu14.04下配置OpenGL及测试代码

        ubuntu14.04 64位下,默认是没有安装OpenGL相关依赖库的,若安装,则依次执行如下几条命令即可:$ sudo apt-get update $ sudo apt-get install build-essential $ sudo apt-get install li...

2018-04-30 17:22:59

阅读数:170

评论数:0

Windows下通过Python 3.x的ctypes调用C接口

        在Python中可以通过ctypes来调用动态库中的C接口,具体操作过程如下:        1. 使用vs2013创建一个加、减、乘、除的动态库,并对外提供C接口,code内容如下:        math_operations.hpp:#ifndef TEST_DLL_1_MA...

2018-04-19 11:01:08

阅读数:252

评论数:0

Go语言基础介绍

        Go是一个开源的编程语言。Go语言被设计成一门应用于搭载Web服务器,存储集群或类似用途的巨型中央服务器的系统编程语言。目前,Go最新发布版本为1.10.        Go语言可以运行在Linux、FreeBSD、Mac OS X和Windows系统上。        1. 结构...

2018-04-18 15:53:50

阅读数:264

评论数:0

深度学习中的卷积网络简介

        卷积网络(convolutional network)也叫做卷积神经网络(convolutional neural network, CNN),是一种专门用来处理具有类似网格结构的数据的神经网络。例如时间序列数据(可以认为是在时间轴上有规律地采样形成的一维网格)和图像数据(可以看作...

2018-04-17 17:30:18

阅读数:301

评论数:0

深度学习中的优化简介

        深度学习算法在许多情况下都涉及到优化。        1. 学习和纯优化有什么不同        在大多数机器学习问题中,我们关注某些性能度量P,其定义于测试集上并且可能是不可解的。因此,我们只是间接地优化P。我们系统通过降低代价函数J(θ)来提高P。这一点与纯优化不同,纯优化最小...

2018-04-16 10:47:40

阅读数:230

评论数:0

吴恩达老师深度学习视频课笔记:构建机器学习项目(机器学习策略)(2)

        进行误差分析:可进行人工统计或可同时并行评估几个想法。进行误差分析时,你应该找一组错误例子,可能在你的开发集里或者在你的测试集里,观察错误标记的例子,看看假阳性(false positives)和假阴性(false negatives),统计属于不同错误类型的错误数量。在这个过程中...

2018-04-15 12:42:58

阅读数:599

评论数:1

吴恩达老师深度学习视频课笔记:构建机器学习项目(机器学习策略)(1)

        机器学习策略(machine learning strategy):分析机器学习问题的方法。    正交化(orthogonalization):要让一个监督机器学习系统很好的工作,一般要确保四件事情,如下图:        (1)、首先,你通常必须确保至少系统在训练集上得到的结果...

2018-04-14 17:52:06

阅读数:230

评论数:0

深度学习中的正则化简介

        机器学习中的一个核心问题是设计不仅在训练数据上表现好,并且能在新输入上泛化好的算法。在机器学习中,许多策略显式地被设计为减少测试误差(可能会以增大训练误差为代价)。这些策略被统称为正则化。深度学习工作者可以使用许多不同形式的正则化策略。在深度学习的背景下,大多数正则化策略都会对估计...

2018-04-12 11:12:13

阅读数:597

评论数:1

深度学习中的深度前馈网络简介

        几乎所有的深度学习算法都可以被描述为一个相当简单的配方:特定的数据集、代价函数、优化过程和模型。        在大多数情况下,优化算法可以定义为求解代价函数梯度为零的正规方程。我们可以替换独立于其它组件的大多数组件,因此我们能得到很多不同的算法。        通常代价函数至少含...

2018-04-10 15:33:05

阅读数:323

评论数:0

OpenCV中基于LBP算法的人脸检测测试代码

        下面是OpenCV 3.3中基于CascadeClassifier类的LBP算法实现的人脸检测,从结果上看,不如其它开源库效果好,如libfacedetection,可参考 https://blog.csdn.net/fengbingchun/article/details/529...

2018-04-09 15:56:01

阅读数:295

评论数:0

吴恩达老师深度学习视频课笔记:超参数调试、Batch正则化和程序框架

        Tuning process(调试处理):神经网络的调整会涉及到许多不同超参数的设置。需要调试的重要超参数一般包括:学习率、momentum、mini-batch size、隐藏单元(hidden units)、层数、学习率衰减。一般对于你要解决的问题而言,你很难提前知道哪个参数最...

2018-04-06 17:01:17

阅读数:318

评论数:0

吴恩达老师深度学习视频课笔记:优化算法

        优化算法能够帮助你快速训练模型。        mini-batch梯度下降法:把训练集分割(split)为小一点的子训练集,这些子集被叫做mini-batch。        batch梯度下降法指的是:同时处理整个训练集,只有处理完整个训练集才更新一次权值和偏置。并且预期每次迭...

2018-04-05 20:30:15

阅读数:259

评论数:0

基于开源TiRG的文本检测与提取实现

        在 http://funkybee.narod.ru/  中作者给出了文本检测和提取的实现,仅有一个.hpp文件,为了在windows上编译通过,这里简单进行了改动,改动后的code如下:#include <math.h> #includ...

2018-04-04 17:05:06

阅读数:240

评论数:0

OpenCV支持中文字符输出实现

        在 http://www.opencv.org.cn/forum.php?mod=viewthread&tid=2083&extra=&page=1 中,作者给出了原始的在OpenCV中 支持中文字符的输入,原...

2018-04-03 17:37:56

阅读数:284

评论数:0

吴恩达老师深度学习视频课笔记:深度学习的实用层面

        训练、验证和测试数据集(training、development and test sets):训练神经网络时,我们需要作出很多决策,如神经网络分多少层(layers)、每层含有多少个隐藏层单元(hidden units)、学习率(learning rates)、各层采用哪些激活函...

2018-03-31 21:49:03

阅读数:311

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭