ZOJ-2365 Strong Defence 无公共边割边集

题意:该题的题意晦涩,勉勉强强听别人说了一遍后再读了一遍题才算懂了题意,题图说的是A国因为B国药进攻自己的国家,于是想办法在联通A-B之间的路径上进行阻击。阻击的舰船停留在一个路径上,舰船上都要放置水晶,相同水晶的舰船可能会被一次性摧毁,于是现在要求给出尽可能多的方案来部署舰船,使得同一水晶的舰船能够阻断所有从B到A的路径,每条路径上只能够部署一部舰船。

分析:题意抽象之后就是一个网络求出从源点到汇点的尽可能多的割边集,且每个割边集没有公共边。根据题目的要求,我们设想从A到B的最短路长度为K,那么假设方案数大于K,那么每个割边集至少要包含该最短路上的一条边,否则存在从A到B的通路,那么这个包含的最优方法是一次包含一条,即便如此该过程也只能够进行K次,超过K次后必定不能够再包含最短路上的任何一条边,因此最后的答案就是K了,然后输出求出最短路之后的距离为1的边集即可。

#include <cstdlib>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
#include <vector>
using namespace std;

const int N = 405;
int n, m, s, t;
int dis[N];
char vis[N], mp[N][N];
queue<int>q;
vector<int>v[N];

struct Edge {
    int a, b;
}e[N*N];

void spfa() {
    memset(dis, 0x3f, sizeof (dis));
    memset(vis, 0, sizeof (vis));
    dis[s] = 0, vis[s] = 1;
    q.push(s);
    while (!q.empty()) {
        int u = q.front();
        q.pop();
        vis[u] = 0;
        for (int v = 1; v <= n; ++v) {
            if (!mp[u][v]) continue;
            if (dis[v] > dis[u] + 1) {
                dis[v] = dis[u] + 1;
                if (!vis[v]) {
                    vis[v] = 1;
                    q.push(v);
                }
            }
        }
    }
}

int main() {
    int T;
    scanf("%d", &T);
    while (T--) {
        memset(mp, 0, sizeof (mp));
        scanf("%d %d %d %d", &n, &m, &s, &t);
        int a, b;
        for (int i = 0; i < n; ++i) v[i].clear();
        for (int i = 1; i <= m; ++i) {
            scanf("%d %d", &a, &b);
            mp[a][b] = mp[b][a] = 1;
            e[i].a = a, e[i].b = b;
        }
        spfa();
        printf("%d\n", dis[t]);
        for (int i = 1; i <= m; ++i) {
            int a = e[i].a, b = e[i].b;
            if (dis[a]+1==dis[b]) {
                v[dis[a]].push_back(i);
            } else if (dis[b]+1==dis[a]) {
                v[dis[b]].push_back(i);
            }
        }
        for (int i = 0; i < dis[t]; ++i) {
            printf("%d", v[i].size());
            for (int j = 0; j < v[i].size(); ++j) {
                printf(" %d", v[i][j]);
            }
            puts("");
        }
    }
    return 0;
}

 

转载于:https://www.cnblogs.com/Lyush/p/3204755.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值