构造函数习题2【高阶辅导】

例26(2013辽宁卷)(构造函数)

设函数\(f(x)\)满足\(x^2f'(x)+2xf(x)=\cfrac{e^x}{x}\)\(f(2)=\cfrac{e^2}{8}\),则\(x>0\)时,\(f(x)\) 【】

A.有极大值,无极小值; B.有极小值,无极大值; C.既有极大值,又有极小值; D.既无极大值也无极小值。

分析:由已知可得,\([x^2\cdot f(x)]'=\cfrac{e^x}{x}①\)

\(f(2)=\cfrac{e^2}{8}\),由已知\(x^2f'(x)+2xf(x)=\cfrac{e^x}{x}\),令\(x=2\),得到\(4f'(2)+4f(2)=\cfrac{e^2}{2}\),解得\(f'(2)=0\)

又由\(x^2f'(x)=\cfrac{e^x}{x}-2xf(x)\),两边同乘以\(x\),得到\(x^3f'(x)=e^x-2[xf(x)]\)

\(g(x)=x^3f'(x)=e^x-2[xf(x)]\),求导并将①式代入,得到\(g'(x)=(e^x)'-2[xf(x)]'=e^x-2\cfrac{e^x}{x}=e^x\cfrac{x-2}{x}\)

\(x\in (0,2)\)时,\(g'(x)<0\)\(g(x)\)单调递减,\(x\in (2,+\infty)\)时,\(g'(x)>0\)\(g(x)\)单调递增,

\(g(x)_{min}=g(2)=2^3f'(2)=0\),故\(g(x)\ge 0\),即\(x^3f'(x)\ge 0\)

\(x>0\) 时,\(f'(x)\ge 0\),即函数\(f(x)\)\((0,+\infty)\)单调递增,故函数\(f(x)\)既无极大值也无极小值。

故选D。

例27【2019届宝中高三文科第二次月考第12题】

定义在实数集上的偶函数\(f(x)\)的导函数为\(f'(x)\),若对任意实数\(x\)都有\(f(x)+\cfrac{x}{2}f’(x)<1\)恒成立,则使得关于\(x\)的不等式\(x^2f(x)-f(1)<x^2-1\)成立的实数\(x\)的取值范围是【】

\(A、\{x\in R \mid x\neq \pm 1\}\)\(B、(-1,1)\)\(C、(-1,0)\cup (0,1)\)\(D、(-\infty,-1)\cup(1,+\infty)\)

分析:先将\(f(x)+\cfrac{x}{2}f’(x)<1\)转化为\(2f(x)+xf'(x)<2\),即\(2f(x)+xf'(x)-2<0\)

结合已知条件,构造\(g(x)=x^2\cdot f(x)-x^2\)

\(g'(x)=2xf(x)+x^2f(x)-2x=x(2f(x)+xf'(x)-2)\)

\(x>0\)时,\(g'(x)=x\cdot(2f(x)+xf'(x)-2)<0\)

\(x\in (0,+\infty)\)时,\(g(x)\)单调递减;由偶函数知道\(x\in (-\infty,0)\)时,\(g(x)\)单调递增;

\(g(0)=0\),此时我们是可以画出其大致示意图的。

待解的不等式\(x^2f(x)-f(1)<x^2-1\)可以转化为\(x^2f(x)-x^2<f(1)-1\)

\(g(x)<g(1)\),由偶函数可知\(g(|x|)<g(1)\)

\(x\in (0,+\infty)\)时,\(g(x)\)单调递减;

故有\(|x|>1\),解得\(x<-1\)\(x>1\);故选D。

例28已知\(f'(x)<f(x)\),且\(f(x+2)\)为偶函数,\(f(4)=1\),则\(f(x)<e^x\)的解集。

分析:将不等式变形为\(\cfrac{f(x)}{e^x}<1\)

故构造函数\(g(x)=\cfrac{f(x)}{e^x}\),则\(g'(x)=\cfrac{f'(x)-f(x)}{e^x}<0\),故\(g(x)\)单调递减,

\(f(x+2)\)为偶函数,故有\(f(-x+2)=f(x+2)\),令\(x=2\),可知\(f(0)=f(4)=1\)

\(g(0)=\cfrac{f(0)}{e^0}=1\),故原不等式变形为\(g(x)<1=g(0)\)

\(g(x)\)单调递减,可知解集为\(\{x \mid x>0\}\)

例29【接连两次构造函数】已知函数\(f(x)\)的导数为\(f'(x)\)\(f(x)\)不是常数函数,且\((x+1)f(x)+xf'(x)\ge 0\)对任意\(x\in[0,+\infty)\)恒成立,则下列不等式一定成立的是【】

\(A.f(1)<2ef(2)\) \(B.ef(1)<f(2)\) \(C.f(1)<0\) \(D.ef(e)<2f(2)\)

分析:由题目可知,\(xf(x)+f(x)+xf'(x)\ge 0\),令\(g(x)=xf(x)\),则有\(g(x)+g'(x)\ge 0\)

\(h(x)=e^xg(x)\),则\(h’(x)=e^xg(x)+e^xg'(x)\ge 0\),故\(h(x)\)\([0,+\infty)\)上单调递增,

故有\(h(2)>h(1)\),即\(e^2\cdot 2\cdot f(x)>e\cdot 1\cdot f(x)\),化简得到\(f(1)<2ef(2)\),故选\(A\)

例30【2018四川达州一诊】若任意\(a\)\(b\)满足\(0<a<b<t\),都有\(blna<alnb\),则\(t\)的最大值为__________。

提示:对\(blna<alnb\)变形得到\(\cfrac{lna}{a}<\cfrac{lnb}{b}\),故构造\(h(x)=\cfrac{lnx}{x}\),则其在\((0,e)\)上单调递增,在\((e,+\infty)\)上单调递减,故\(h(x)_{max}=h(e)\),故\(t_{max}=e\)

转载于:https://www.cnblogs.com/wanghai0666/p/10823664.html

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值