Spark中直接操作HDFS

Spark作为一个基于内存的大数据计算框架,可以和hadoop生态的资源调度器和分布式文件存储系统无缝融合。Spark可以直接操作存储在HDFS上面的数据:

通过Hadoop方式操作已经存在的文件目录

val path = new
org.apache.hadoop.fs.Path("hdfs://xxx"); val hdfs = org.apache.hadoop.fs.FileSystem.get( new java.net.URI("hdfs://x", new org.apache.hadoop.conf.Configuration()) ); if(hdfs.exists(path) hdfs.delete(path,false))

   

通过spark自带的hadoopconf方式操作已经存在文件目录 

val hadoopConf = sparkContext.hadoopConfiguration
    val hdfs = org.apache.hadoop.fs.FileSystem.get(hadoopConf)
 if(hdfs.exists(path)){
      //为防止误删,禁止递归删除
      hdfs.delete(path,false)
    }

  

 

转载于:https://www.cnblogs.com/maxigang/p/10033159.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值