傅里叶变换性质证明卷积_傅里叶变换2.系统属性和卷积公式的推导

本文介绍了系统属性,包括无记忆、有记忆、因果性和时不变性,并详细推导了线性时不变系统中的卷积公式,阐述了如何通过冲击响应h[n]来描述整个系统。
摘要由CSDN通过智能技术生成

本文主要介绍系统属性以及推导出时不变系统的卷积公式。

1.系统的概念

一个系统简而言之就是,接受输入,产生输出。

人的眼睛接受光信号,在大脑中产生化学信号(使得我们能够看到外界)就是一种系统。系统的范围很广阔,可以说万物皆系统。

cd17918fe69a295eb36f120c8789f1f5.png

连续时间系统t的取值为所有实数用圆括号()表示, 离散时间系统的取值为所有整数用方括号[]表示。

2.系统属性

无记忆系统(memoryless), 就是输出y[n]只取决相同时间点x[n]的输入,例如y[n] = 2*x[n]^2,

有记忆系统(memory), 输出不仅取决于同时刻的输入值,也取决于过去的值。例如y[n] = x[n] + x[n - 1]

因果性(casual),即不可预测未来,当前输出的值y[n]只取决于当前或之前的输入,比如y[n] = x[n] + x[n-1]。同时,无记忆系统和有记忆系统都是因果性系统。

时不变(time invariance),系统的性质不会随着时间发生变化。一个时变系统是人眼,十年前你看到的一束光和现在你看到的一束光感受是不一样的,你的眼睛在老化,你感觉到的光的强度可能因为老化而变得模糊。一个系统当输入为x[n]的输出是y[n],当输入为x[n-n0]的时候,输出是y[n-n0],这样子的系统就是时不变系统。(x[n - n0] 是x[n] 的信号延迟(delay) n0个单位后的序列)

线

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值