本文主要介绍系统属性以及推导出时不变系统的卷积公式。
1.系统的概念
一个系统简而言之就是,接受输入,产生输出。
人的眼睛接受光信号,在大脑中产生化学信号(使得我们能够看到外界)就是一种系统。系统的范围很广阔,可以说万物皆系统。
连续时间系统t的取值为所有实数用圆括号()表示, 离散时间系统的取值为所有整数用方括号[]表示。
2.系统属性
无记忆系统(memoryless), 就是输出y[n]只取决相同时间点x[n]的输入,例如y[n] = 2*x[n]^2,
有记忆系统(memory), 输出不仅取决于同时刻的输入值,也取决于过去的值。例如y[n] = x[n] + x[n - 1]
因果性(casual),即不可预测未来,当前输出的值y[n]只取决于当前或之前的输入,比如y[n] = x[n] + x[n-1]。同时,无记忆系统和有记忆系统都是因果性系统。
时不变(time invariance),系统的性质不会随着时间发生变化。一个时变系统是人眼,十年前你看到的一束光和现在你看到的一束光感受是不一样的,你的眼睛在老化,你感觉到的光的强度可能因为老化而变得模糊。一个系统当输入为x[n]的输出是y[n],当输入为x[n-n0]的时候,输出是y[n-n0],这样子的系统就是时不变系统。(x[n - n0] 是x[n] 的信号延迟(delay) n0个单位后的序列)
线