我们先看一个例子。
示例: 1 2 3的全排列如下:
1 2 3 , 1 3 2 , 2 1 3 , 2 3 1 , 3 1 2 , 3 2 1
我们这里是通过字典序法找出来的。
那么什么是字典序法呢?
从上面的全排列也可以看出来了,从左往右依次增大,对这就是字典序法。可是如何用算法来实现字典序法全排列呢?
我们再来看一段文字描述:(用字典序法找124653的下一个排列)
你主要看红色字体部分就行了,这就是步骤。
如果当前排列是124653,找它的下一个排列的方法是,从这个序列中从右至左找第一个左邻小于右邻的数,
如果找不到,则所有排列求解完成,如果找得到则说明排列未完成。
本例中将找到46,计4所在的位置为i,找到后不能直接将46位置互换,而又要从右到左到第一个比4大的数,
本例找到的数是5,其位置计为j,将i与j所在元素交换125643,
然后将i+1至最后一个元素从小到大排序得到125346,这就是124653的下一个排列。
下图是用字典序法找1 2 3的全排列(全过程):
代码实现(C语言):
1 #include <stdio.h> 2 //交换list[a],list[b] 3 void Swap(int list[], int a, int b) 4 { 5 int temp = 0; 6 temp = list[a]; 7 list[a] = list[b]; 8 list[b] = temp; 9 return; 10 } 11 //将list区间[a,n]之间的数据由小到大排序 12 void Sort(int list[], int a, int n) 13 { 14 int temp = 0; 15 for (int i = 1; i < n-a; ++i) 16 for (int j = a+1; j < n-1; ++j) 17 if (list[j] > list[j+1]) 18 { 19 temp = list[j]; 20 list[j] = list[j+1]; 21 list[j+1] = temp; 22 } 23 return; 24 } 25 //全排列 26 void Prim(int list[], int n) 27 { 28 int num = 1, a = 0, b = 0; 29 for (int i = n; i > 0; --i) //计算有多少种情况,就循环多少次 30 num *= i; 31 while (num--) 32 { 33 for (int i = 0; i < n; ++i) //打印情况 34 printf("%d ",list[i]); 35 printf("\n"); 36 37 for (int i = n-1; i > 0; --i) //从右往左,找出第一个左边小于右边的数,设为list[a] 38 if (list[i-1] < list[i]) 39 { 40 a = i-1; 41 break; 42 } 43 for (int j = n-1; j > a; --j) //从右往左,找出第一个大于list[a]的数,设为list[b] 44 if (list[j] > list[a]) 45 { 46 b = j; 47 break; 48 } 49 Swap(list, a, b); //交换list[a],list[b] 50 Sort(list, a, n); //将list[a]后面的数据,由小往大排列 51 } 52 return; 53 } 54 //主函数 55 int main() 56 { 57 int list[] = {1,2,3,4}; 58 Prim(list,3); 59 return 0; 60 }