nyoj 1239 引水project (河南省第八届acm程序设计大赛)

引水project

时间限制:2000 ms  |  内存限制:65535 KB
难度:3
描写叙述

南水北调project是优化水资源配置、促进区域协调发展的基础性project。是新中国成立以来投资额最大、涉及面最广的战略性project,事关中华民族长远发展。“南水北调project”。旨在缓解中国华北西北地区水资源短缺的国家战略性project。就是把中国长江流域丰盈的水资源抽调一部分送到华北和西北地区。

我国南涝北旱,南水北调project通过跨流域的水资源合理配置。促进南北方经济、社会与人口、资源、环境的协调发展。

整个project分东线、中线、西线三条调水线。东线project位于东部,因地势低需抽水北送至华北地区。中线project从汉水与其最大支流丹江交汇处的丹江口水库引水,自流供水给黄淮海平原大部分地区,20多座大中城市;西线project在青藏高原上,由长江上游向黄河上游补水。

如今有N个区域须要建设水资源project,它们能够自建水库解决缺水问题,也能够从已有水源的地区建立管道引水过来。

当然。这些建设都须要大量投资。

你能不能给出一个优化水资源配置方案,在保证每一个区域都能用上水的前提下。使得整个引水project费用最低。

输入
第一行: K 表示有多少组測试数据。


接下来对每组測试数据:
第1行: N 表示有N个区域( 1<=N<=300 )
第2 行: W1 W2 …. WN Wi表示第i个区域自建水库须要的费用
再有N行: Pi1 Pi2 …. Pin Pij表示建立第i个区域与第j个区域引水管道的费用

输出
对于每组測试数据,输出占一行,即建立整个引水project的最小费用。
例子输入
155 4 4 3 60 2 2 2 22 0 3 3 32 3 0 4 52 3 4 0 12 3 5 1 0
例子输出
10
来源

第八届河南省程序设计大赛

去年刚刚大一 对于什么图论算法都不懂 也不懂得变通 看到这道题 就直接放弃了。今天再做 清晰明了 明年再来。

仅仅要把问题转换一下 就是最小生成树 

最好用prim算法  反正我是用kruskal算法没算出来。

我的大概思路 就是 首先找到一个自建水库最少费用的 然后以此为根本 找到与之相关的边

比較权值和它本身自建水库所需费用  


#include <stdio.h>
#include <string.h>
#define INF 0x3fffffff
int map[350][350];
bool vis[350];
int n;
void dijkstra()
{
	int minn=INF;
	int pos=-1;
	int res=0;
	for(int i=1;i<=n;i++)
	{
		if(minn>map[i][i])
		{
			minn=map[i][i];
			pos=i;
		}
	}
	int stamp[350];
	int cnt=0;
	stamp[cnt++]=pos;
	vis[pos]=true;
	res=minn;
	while(cnt<n)
	{
		minn=INF;
		for(int i=0;i<cnt;i++)
		{
			int x=stamp[i];
			for(int j=1;j<=n;j++)
			{
				if(!vis[j])
				{
					if(minn>map[x][j])
					{
						minn=map[x][j];
						pos=j;
					}
					if(minn>map[j][j])
					{
						minn=map[j][j];
						pos=j;
					}
				}
			}
		}
		stamp[cnt++]=pos;
		vis[pos]=true;
		res+=minn;
	}
	printf("%d\n",res);
}
int main()
{
	int k;
	scanf("%d",&k);
	while(k--)
	{
		memset(vis,false,sizeof(vis));
		memset(map,100,sizeof(map));
		scanf("%d",&n);
		for(int i=1;i<=n;i++)
		{
			scanf("%d",&map[i][i]);
		} 
		int skip;
		for(int i=1;i<=n;i++)
		{
			for(int j=1;j<=n;j++)
			{
				if(i==j) scanf("%d",&skip);
				else scanf("%d",&map[i][j]);
			}
		}
		dijkstra();
	}
	return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值