引水project
-
描写叙述
-
南水北调project是优化水资源配置、促进区域协调发展的基础性project。是新中国成立以来投资额最大、涉及面最广的战略性project,事关中华民族长远发展。“南水北调project”。旨在缓解中国华北和西北地区水资源短缺的国家战略性project。就是把中国长江流域丰盈的水资源抽调一部分送到华北和西北地区。
我国南涝北旱,南水北调project通过跨流域的水资源合理配置。促进南北方经济、社会与人口、资源、环境的协调发展。
整个project分东线、中线、西线三条调水线。东线project位于东部,因地势低需抽水北送至华北地区。中线project从汉水与其最大支流丹江交汇处的丹江口水库引水,自流供水给黄淮海平原大部分地区,20多座大中城市;西线project在青藏高原上,由长江上游向黄河上游补水。
如今有N个区域须要建设水资源project,它们能够自建水库解决缺水问题,也能够从已有水源的地区建立管道引水过来。
当然。这些建设都须要大量投资。
你能不能给出一个优化水资源配置方案,在保证每一个区域都能用上水的前提下。使得整个引水project费用最低。
-
输入
-
第一行: K 表示有多少组測试数据。
接下来对每组測试数据:
第1行: N 表示有N个区域( 1<=N<=300 )
第2 行: W1 W2 …. WN Wi表示第i个区域自建水库须要的费用
再有N行: Pi1 Pi2 …. Pin Pij表示建立第i个区域与第j个区域引水管道的费用
输出
- 对于每组測试数据,输出占一行,即建立整个引水project的最小费用。 例子输入
-
155 4 4 3 60 2 2 2 22 0 3 3 32 3 0 4 52 3 4 0 12 3 5 1 0
例子输出
-
10
来源
去年刚刚大一 对于什么图论算法都不懂 也不懂得变通 看到这道题 就直接放弃了。今天再做 清晰明了 明年再来。
仅仅要把问题转换一下 就是最小生成树
最好用prim算法 反正我是用kruskal算法没算出来。
。
我的大概思路 就是 首先找到一个自建水库最少费用的 然后以此为根本 找到与之相关的边
比較权值和它本身自建水库所需费用
-
第一行: K 表示有多少组測试数据。
#include <stdio.h>
#include <string.h>
#define INF 0x3fffffff
int map[350][350];
bool vis[350];
int n;
void dijkstra()
{
int minn=INF;
int pos=-1;
int res=0;
for(int i=1;i<=n;i++)
{
if(minn>map[i][i])
{
minn=map[i][i];
pos=i;
}
}
int stamp[350];
int cnt=0;
stamp[cnt++]=pos;
vis[pos]=true;
res=minn;
while(cnt<n)
{
minn=INF;
for(int i=0;i<cnt;i++)
{
int x=stamp[i];
for(int j=1;j<=n;j++)
{
if(!vis[j])
{
if(minn>map[x][j])
{
minn=map[x][j];
pos=j;
}
if(minn>map[j][j])
{
minn=map[j][j];
pos=j;
}
}
}
}
stamp[cnt++]=pos;
vis[pos]=true;
res+=minn;
}
printf("%d\n",res);
}
int main()
{
int k;
scanf("%d",&k);
while(k--)
{
memset(vis,false,sizeof(vis));
memset(map,100,sizeof(map));
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
scanf("%d",&map[i][i]);
}
int skip;
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
if(i==j) scanf("%d",&skip);
else scanf("%d",&map[i][j]);
}
}
dijkstra();
}
return 0;
}