题目描述
输入
第一行包含一个正整数testcase,表示当前测试数据的测试点编号。保证1≤testcase≤20。
第二行包含三个整数N,M,T,分别表示节点数、初始边数、操作数。第三行包含N个非负整数表示 N个节点上的权值。
接下来 M行,每行包含两个整数x和 y,表示初始的时候,点x和点y 之间有一条无向边, 接下来 T行,每行描述一个操作,格式为“Q x y k”或者“L x y ”,其含义见题目描述部分。
输出
对于每一个第一类操作,输出一个非负整数表示答案。
样例输入
8 4 8
1 1 2 2 3 3 4 4
4 7
1 8
2 4
2 1
Q 8 7 3 Q 3 5 1
Q 10 0 0
L 5 4
L 3 2 L 0 7
Q 9 2 5 Q 6 1 6
样例输出
2
1
4
2
提示
对于第一个操作 Q 8 7 3,此时 lastans=0,所以真实操作为Q 8^0 7^0 3^0,也即Q 8 7 3。点8到点7的路径上一共有5个点,其权值为4 1 1 2 4。这些权值中,第三小的为 2,输出 2,lastans变为2。对于第二个操作 Q 3 5 1 ,此时lastans=2,所以真实操作为Q 3^2 5^2 1^2 ,也即Q 1 7 3。点1到点7的路径上一共有4个点,其权值为 1 1 2 4 。这些权值中,第三小的为2,输出2,lastans变为 2。之后的操作类似。
这道题总共两个操作,没有连边操作就是BZOJ2588,但有了连边操作可能会想到LCT。因为数据范围不大,所以可以用启发式合并将两棵树合并。每次连接x,y时,比较两棵树的大小,把小的那棵连到大的那棵上,然后更新小的那棵树上每个点的倍增数组,祖先(即大的那棵树的根),深度及这个点所对应的线段树。每次查询时求出两个点的lca及lca的父节点,在主席树上直接查询即可。
#include<map>
#include<set>
#include<queue>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define mid (L+R)/2
using namespace std;
int cnt;
int tot;
int ans;
int len;
int a,b;
int tcase;
int n,m,q;
char s[5];
int x,y,z;
int d[80010];
int h[80010];
int v[80010];
map<int,int>g;
int to[200010];
int vis[80010];
int anc[80010];
int size[80010];
int l[20000010];
int r[20000010];
int next[200010];
int head[200010];
int f[80010][26];
int sum[20000010];
int root[2000010];
void add(int x,int y)
{
tot++;
next[tot]=head[x];
head[x]=tot;
to[tot]=y;
}
int lca(int x,int y)
{
if(d[x]<d[y])
{
swap(x,y);
}
int dep=d[x]-d[y];
for(int i=0;i<=23;i++)
{
if((dep&(1<<i))!=0)
{
x=f[x][i];
}
}
if(x==y)
{
return x;
}
for(int i=23;i>=0;i--)
{
if(f[x][i]!=f[y][i])
{
x=f[x][i];
y=f[y][i];
}
}
return f[x][0];
}
int updata(int pre,int L,int R,int v)
{
int rt=++cnt;
l[rt]=l[pre];
r[rt]=r[pre];
sum[rt]=sum[pre]+1;
if(L==R)
{
return rt;
}
else
{
if(v<=mid)
{
l[rt]=updata(l[pre],L,mid,v);
}
else
{
r[rt]=updata(r[pre],mid+1,R,v);
}
}
return rt;
}
int query(int x,int y,int fa,int anc,int L,int R,int k)
{
if(L==R)
{
return g[L];
}
int num=sum[l[x]]+sum[l[y]]-sum[l[fa]]-sum[l[anc]];
if(k<=num)
{
return query(l[x],l[y],l[fa],l[anc],L,mid,k);
}
else
{
return query(r[x],r[y],r[fa],r[anc],mid+1,R,k-num);
}
}
void dfs(int x,int fa,int ac)
{
vis[x]=1;
anc[x]=ac;
f[x][0]=fa;
d[x]=d[fa]+1;
root[x]=updata(root[fa],1,n,v[x]);
for(int i=1;i<=23;i++)
{
f[x][i]=f[f[x][i-1]][i-1];
}
for(int i=head[x];i;i=next[i])
{
if(to[i]!=fa)
{
dfs(to[i],x,ac);
size[x]+=size[to[i]];
}
}
}
int main()
{
scanf("%d",&tcase);
scanf("%d%d%d",&n,&m,&q);
for(int i=1;i<=n;i++)
{
scanf("%d",&v[i]);
h[i]=v[i];
size[i]=1;
}
sort(h+1,h+1+n);
len=unique(h+1,h+1+n)-h-1;
for(int i=1;i<=n;i++)
{
int val=v[i];
v[i]=lower_bound(h+1,h+1+len,v[i])-h;
g[v[i]]=val;
}
for(int i=1;i<=m;i++)
{
scanf("%d%d",&x,&y);
add(x,y);
add(y,x);
}
for(int i=1;i<=n;i++)
{
if(!vis[i])
{
dfs(i,0,i);
}
}
while(q--)
{
scanf("%s",s);
if(s[0]=='Q')
{
scanf("%d%d%d",&x,&y,&z);
x=x^ans;
y=y^ans;
z=z^ans;
a=lca(x,y);
b=f[a][0];
ans=query(root[x],root[y],root[a],root[b],1,n,z);
printf("%d\n",ans);
}
else
{
scanf("%d%d",&x,&y);
x=x^ans;
y=y^ans;
add(x,y);
add(y,x);
if(size[anc[x]]<size[anc[y]])
{
size[anc[y]]+=size[anc[x]];
dfs(x,y,anc[y]);
}
else
{
size[anc[x]]+=size[anc[y]];
dfs(y,x,anc[x]);
}
}
}
}