/*-----------------堆排序---------------------*/
/**
* 时间复杂度O(NlgN)
*/
int heapSize=0;
@Test
public void heapSort(){
int[] array={ 5, 2, 4, 6, 1, -1,8,7,3 ,99,0,78};
//堆排序
heapSort(array);
//观察排序后数组
System.out.println(Arrays.toString(array));
}
private void heapSort(int[] array) {
//创建最大堆
buildMaxHeap(array);
//根据堆的性质,数组中第一个元素必然是最大值,将该最大值和数组最后的元素换位。
//这样,一一交换,数组的最大值就逐渐排到了最后位置
for(int i=array.length-1;i>0;i--){
//将最大值交换到数组最后位置
exchange(array,i,0);
//由于末尾已经放置了最大值,这时可以忽略末尾一个元素,继续将第二大的元素放到末尾。。。
heapSize--;
//maxHeapify这个已经去掉一个元素的堆,目的是将最大的元素上移到数组第一个元素位置
maxHeapify(array,0);
}
}
private void maxHeapify(int[] array, int i) {
//获取堆中该元素的左孩子位置和右孩子位置
int l=left(i);
int r=right(i);
//初始化最大元素的就是i位置的元素
int largest=i;
//如果堆的左右孩子存在,并且有比他更大的,那么找出最大的那个
if(l<=heapSize-1&&array[l]>=array[i]){
largest=l;
}
if(r<=heapSize-1&&array[r]>=array[largest]){
largest=r;
}
if(largest!=i){
//如果i不是最大值,那么将i和最大值换位
exchange(array, i, largest);
//换位后,新的i索引处此时不见得可以满足堆性质,需要不断递归做验证
maxHeapify(array, largest);
}
}
private void buildMaxHeap(int[] array) {
heapSize=array.length;
//建立最大堆的过程其实就是将每个非叶子节点进行maxHeapify
//从array.length/2+1开始,后面都是作为叶子节点存在
for(int i=array.length/2-1;i>=0;i--){
maxHeapify(array, i);
}
System.out.println("------"+Arrays.toString(array));
}
/**由于数组索引是从0开始计算,那么左右元素的位置应该处于i*2+1和i*2+2的位置 */
private int right(int i) {
return i*2+2;
}
private int left(int i) {
return i*2+1;
}
private void exchange(int[] array, int i, int j) {
int temp=array[i];
array[i]=array[j];
array[j]=temp;
}