这篇文章参考了许多资料和自己的理解。
先放理论基础。
最大公约数:小学学过,这里只提一些重要的公式:
$·$若$a=b$,则$\gcd(a,b)=a=b$;
$·$若$\gcd(a,b)=d$,则$\gcd(b,a-b)=d$,所以就有了欧几里得辗转相除法;
$·$如果$a$为偶数,$b$为奇数,则$\gcd(a,b)=\gcd\left(\dfrac a2,b\right)$;
$·$如果$a$、$b$均为偶数,则$\gcd(a,b)=2\times \gcd\left(\dfrac a2,\dfrac b2\right)$。
$·$若$\gcd(a,b)=d$,则$\gcd\left(\dfrac ad,\dfrac bd\right)=1$;
数论函数:定义域为正整数、值域是复数的子集的函数称为数论函数。$\text{OI}$中一般都是整数。
积性函数:设$f$为数论函数,对于任意互质的两个正整数$a$、$b$,且$f(a)f(b)=f(ab)$,则$f$是积性函数。如果对于任意两个正整数$a$、$b$满足$f(a)f(b)=f(ab)$,则称之为完全积性函数。区别两者。
因式分解:这个小学就学过了。用现在的知识说,$n=p_1^{\alpha_1}p_2^{\alpha_2}···p_s^{\alpha_s}$是$n$的标准分解,$p_1,p_2,···,p_s$均为质数。
根据以上三条,可以得到:对于积性函数$f$,有$f(n)=f(p_1^{\alpha_1})f(p_2^{\alpha_2})···f(p_s^{\alpha_s})$,所以研究积性函数可以研究其在素数的幂上的取值。
所以我们可以用$\text{Euler}$筛法线性时间内求解出所需的$f$的值。
单位函数:$\epsilon(n)=[n=1]=\left\{\begin{aligned}1,n=1\\0,n\ne1\end{aligned}\right.$。其中$[\text{state}]$表示当$\text{state}$为真时值为$1$,否则为$0$。单位函数是完全积性函数。
除数函数:$\sigma_k(n)$表示$n$的因子的$k$次方之和:$\sigma_k(n)=\sum\limits_{d|n}d^k$。当$k=0$时变成求其约数个数,此时写作$d(n)$;当$k=1$时变成求约数和,此时写作$\sigma(n)$。除数函数是积性函数。
$\text{Euler}$函数:表示不超过$n$且与$n$互质的正整数的个数,根据容斥原理可得:$\varphi(n)=n·\prod\limits_{i=1}^s\left(1-\dfrac{1}{p_i}\right)$。其中$n=p_1^{\alpha_1}p_2^{\alpha_2}···p_s^{\alpha_s}$是$n$的标准分解。
然后对于$\text{Euler}$函数,有一个性质:$n=\sum\limits_{d|n}\varphi(d)$。
证明:考虑根据与$n$的最大公约数分组,设$\gcd(n,i)=d$,则根据前面所讲的性质得到$\gcd\left(\dfrac nd,\dfrac id\right)=1$,所以与$n$的最大公约数为$d$的数有$\varphi\left(\dfrac nd\right)$,又因为所有$\leq n$的数与$n$的最大公约数$d$一定整除$n$,所以可得:$n=\sum\limits_{d|n}\varphi\left(\dfrac nd\right)=\sum\limits_{d|n}\varphi(d)$。(因为$d$和$\dfrac nd$成对出现,所以可以替换)
要到重点啦~
$\text{Dirichlet}$卷积:设$f$、$g$是数论函数,对于数论函数$h$如果满足$h(n)=\sum\limits_{d|n}f(d)g\left(\dfrac nd\right)$,则称$h$为$f$和$g$的$\text{Dirichlet}$卷积,简写成$h=f*g$。对于任意的数论函数$f$,有$f*\epsilon=f$。$\text{Dirichlet}$卷积满足交换律和结合律。$h=f*g$为积性函数当且仅当$f,g$为积性函数。
幂函数:表示$n^k$,写作$\text{Id}_k(n)$,当$k=1$时$k$可不写。一般当作记号。
根据这些我们可以将上面的式子改成$\text{Dirichlet}$卷积的形式,例如除数函数的性质可写成$\sigma_k(n)=\text{Id}_k*1$,$\text{Euler}$函数的性质可写成$\text{Id}=\varphi*1$。
到啦~
$\text{Mobius}$函数:定义$\mu(n)=\left\{\begin{array}{ll}1 & n=1\\(-1)^s & n=p_1p_2···p_s\text{且}p_1,p_2,···,p_s\text{互不相等}\ &\\0 & \text{其他(也就是含有因数为质数的平方)}\end{array}\right.$。$\mu$是积性函数。
$\text{Mobius}$函数重要的性质:$\sum\limits_{d|n}\mu(d)=\epsilon(n)$。用$\text{Dirichlet}$卷积表示就是$\mu*1=\epsilon$。
证明:$n=1$时成立是显然的。若$n>1$,设素因子有$s$个,如果$d$出现了$2$次相同的素因子,根据定义$\mu(d)=0$,所以只考虑$d$中素因子的指数为$0$或$1$时。即$d$为$s$个素因子中任意选取$0\text{~}s$个素因子的乘积,所以得:$\sum\limits_{d|n}\mu(d)=\sum\limits_{i=0}^s(-1)^i\left(\begin{matrix}s\\i\end{matrix}\right)=(1-1)^s=0$。结果和$\epsilon$定义一样,即证。
$\text{Mobius}$变换:设$f$为数论函数,若函数$g$满足$g(n)=\sum\limits_{d|n}f(d)$,则称$g$为$f$的$\text{Mobius}$变换,$f$为$g$的$\text{Mobius}$逆变换。也可以写作$g=f*1$。
$\text{Mobius}$反演定理:上面的$\text{Mobius}$变换的充要条件为$f(n)=\sum\limits_{d|n}g(d)\mu\left(\dfrac nd\right)$。可以写作$f=g*\mu$。对此的推导很简单,由$f=g*\mu$得$f*1=g*\mu*1$,根据$\mu*1=\epsilon$得$f*1=g*(\mu*1)=g*\epsilon$,又因为$f*\epsilon=f$,所以$g*\epsilon=g=f*1$,就得到了上面的$\text{Mobius}$变换。
到这,该有的定义还有就说完了。
一般的求解就是利用卷积转化原式,再通过调换求和顺序或者通过整除分块的科技降低复杂度。常用的卷积就是上面所述(还算比较套路的8虽然我还是很弱)。
这里放几个经典的例子(正在施工,待更)
[SDOI2012]Longge的问题:跟Mobius反演没有直接关系,但值得一看。
[HAOI2011]Problem b:跟Mobius有关系啦!之中有整除分块的相关内容,很重要。