POJ 3268:Silver Cow Party 求单点的来回最短路径

Silver Cow Party
Time Limit: 2000MS Memory Limit: 65536K
Total Submissions: 15989 Accepted: 7303

Description

One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbered 1..N is going to attend the big cow party to be held at farm #X (1 ≤ X ≤ N). A total of M (1 ≤ M ≤ 100,000) unidirectional (one-way roads connects pairs of farms; road irequires Ti (1 ≤ Ti ≤ 100) units of time to traverse.

Each cow must walk to the party and, when the party is over, return to her farm. Each cow is lazy and thus picks an optimal route with the shortest time. A cow's return route might be different from her original route to the party since roads are one-way.

Of all the cows, what is the longest amount of time a cow must spend walking to the party and back?

Input

Line 1: Three space-separated integers, respectively:  NM, and  X 
Lines 2.. M+1: Line  i+1 describes road  i with three space-separated integers:  AiBi, and  Ti. The described road runs from farm  Ai to farm  Bi, requiring  Ti time units to traverse.

Output

Line 1: One integer: the maximum of time any one cow must walk.

Sample Input

4 8 2
1 2 4
1 3 2
1 4 7
2 1 1
2 3 5
3 1 2
3 4 4
4 2 3

Sample Output

10

Hint

Cow 4 proceeds directly to the party (3 units) and returns via farms 1 and 3 (7 units), for a total of 10 time units.

求目标点到图中的其他点来回的最小值。

Dijkstra直接求来回的距离,然后比较求出最小值。

代码:

#include <iostream>
#include <algorithm>
#include <cmath>
#include <vector>
#include <string>
#include <cstring>
#pragma warning(disable:4996)
using namespace std;

const int MAX = 100005;
int edge[1005][1005];
int vist[1005],vist2[1005],minidis1[1005][1005],minidis2[1005][1005];
int N,M,X;

void init()
{
	int i,j;

	for(i=1;i<=N;i++)
	{
		for(j=1;j<=N;j++)
		{
			if(j==i)
			{
				edge[i][j]=0;
				minidis1[i][j]=0;
				minidis2[i][j]=0;
			}
			else
			{
				edge[i][j]=-1;
				minidis1[i][j]=MAX;
				minidis2[i][j]=MAX;
			}
		}
	}
	for(i=1;i<=N;i++)
	{
		vist[i]=0;
		vist2[i]=0;
	}
}

void dijkstra(int i)
{
	int j,k;
	int position=i;
	int position2=i;

	vist[position]=1;
	vist2[position]=1;
	minidis1[i][position]=0;
	minidis2[position][i]=0;

	for(j=1;j<=N-1;j++)//一共要添加进num-1个点
	{
		for(k=1;k<=N;k++)
		{
			if(vist[k]==0 && edge[position][k]!=-1 && minidis1[i][position]+edge[position][k] < minidis1[i][k])//新填入的点更新minidis
			{
				minidis1[i][k]=minidis1[i][position]+edge[position][k];
			}
			if(vist2[k]==0 && edge[k][position2]!=-1 && minidis2[position2][i]+edge[k][position2] < minidis2[k][i])//新填入的点更新minidis
			{
				 minidis2[k][i]=minidis2[position2][i]+edge[k][position2];
			}
		}
		int min_value=MAX,min_pos=0;
		int min_value2=MAX,min_pos2=0;
		for(k=1;k<=N;k++)
		{
			if(vist[k]==0 && minidis1[i][k]<min_value)//比较出最小的那一个作为新添入的店
			{
				min_value = minidis1[i][k];
				min_pos = k;
			}
			if(vist2[k]==0 && minidis2[k][i]<min_value2)//比较出最小的那一个作为新添入的店
			{
				min_value2 = minidis2[k][i];
				min_pos2 = k;
			}
		}

		vist[min_pos]=1;
		position=min_pos;

		vist2[min_pos2]=1;
		position2=min_pos2;
	}

}

int main()
{
	int i;
	cin>>N>>M>>X;
	init();

	int temp1,temp2,temp3;
	for(i=1;i<=M;i++)
	{
		cin>>temp1>>temp2>>temp3;
		edge[temp1][temp2]=temp3;
	}
	memset(vist,0,sizeof(vist));
	memset(vist2,0,sizeof(vist2));

	dijkstra(X);
	int ans=-1;
	for(i=1;i<=N;i++)
	{
		if(i==X)continue;
		ans=max(ans,minidis1[X][i]+minidis2[i][X]);
	}

	cout<<ans<<endl;
	return 0;
}



版权声明:本文为博主原创文章,未经博主允许不得转载。

转载于:https://www.cnblogs.com/lightspeedsmallson/p/4928112.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值