http://poj.org/problem?id=2154
大致题意:由n个珠子,n种颜色,组成一个项链。要求不同的项链数目。旋转后一样的属于同一种。结果模p。
n个珠子应该有n种旋转置换。每种置换的循环个数为gcd(i,n)。假设直接枚举i,显然不行。可是我们能够缩小枚举的数目。
改为枚举每一个循环节的长度L,那么对应的循环节数是n/L。所以我们仅仅需求出每一个L有多少个i满足gcd(i,n)= n/L。就得到了循环节数为n/L的个数。
重点就是求出这种i的个数。
令cnt = gcd(i,n) = n/L。
那么cnt | i。令i = cnt*t(0 <= t <= L)。
又 n = cnt * L ;
所以gcd(i,n) = gcd( cnt*t, cnt*L) = cnt。
满足上式的条件是 gcd(t,L) = 1。
而这种t 有Eular(L)个。
因此循环节个数是n/L的置换个数有Eular(L)个。
參考博客:http://blog.csdn.net/tsaid/article/details/7366708
代码中求欧拉函数是基于素数筛的,素数仅仅需筛到sqrt(1e9)就可以。我在筛素数的同一时候递推的记录了sqrt(1e9)以内的Eular(n),用phi[]表示。这样会快那么一点点。
#include <stdio.h>
#include <iostream>
#include <algorithm>
#include <set>
#include <map>
#include <vector>
#include <math.h>
#include <string.h>
#include <queue>
#include <string>
#include <stdlib.h>
#define LL long long
#define _LL __int64
#define eps 1e-8
#define PI acos(-1.0)
using namespace std;
const int maxn = 35000;
const int INF = 0x3f3f3f3f;
int n,p;
int ans;
int prime[maxn];
int flag[maxn];
int prime_num;
int phi[maxn];
int mod_exp(int a, int b, int c)
{
int res = 1;
a = a%c;
while(b)
{
if(b&1)
res = (res*a)%c;
a = (a*a)%c;
b >>= 1;
}
return res;
}
//素数筛并记录maxn以内的Eular(n)。用phi[]表示
void get_prime()
{
memset(flag,0,sizeof(flag));
prime_num = 0;
phi[1] = 1;
for(int i = 2; i <= maxn; i++)
{
if(!flag[i])
{
prime[++prime_num] = i;
phi[i] = i-1;
}
for(int j = 1; j <= prime_num && i*prime[j] <= maxn; j++)
{
flag[i*prime[j]] = 1;
if(i % prime[j] == 0)
phi[i*prime[j]] = phi[i] * prime[j];
else phi[i*prime[j]] = phi[i] * (prime[j]-1);
}
}
}
int Eular(int n)
{
if(n < maxn)
return phi[n] % p;
//求大于maxn的Eular(n)
int res = n;
for(int i = 1; prime[i]*prime[i] <= n && i <= prime_num; i++)
{
if(n % prime[i] == 0)
{
res -= res/prime[i];
while(n%prime[i] == 0)
n = n/prime[i];
}
}
if(n > 1)
res -= res/n;
return res%p;
}
int main()
{
int test;
get_prime();
scanf("%d",&test);
while(test--)
{
scanf("%d %d",&n,&p);
ans = 0;
for(int l = 1; l*l <= n; l++)
{
if(l*l == n)
{
ans = (ans + Eular(l)*mod_exp(n,l-1,p))%p;
}
else if(n%l == 0) //循环节长度为l,那么n/l也是循环节长度
{
ans = (ans + Eular(l)*mod_exp(n,n/l-1,p))%p;
ans = (ans + Eular(n/l)*mod_exp(n,l-1,p))%p;
}
}
printf("%d\n",ans);
}
return 0;
}