【JZOJ3298】【SDOI2013】项链 莫比乌斯反演+Polya计数法+欧拉函数+通项公式

任务

这里写图片描述
100%n<=1014a<=107T<=10

解法

显然我们可以分两步走:
1.计算珠子的种类数
2.有多少条本质不同的项链


Part Ⅰ

我们计算珠子的种类数,
显然是一个莫比乌斯反演的简单应用。
利用

Ans=i=1nni3μ(i)

我们可以求出有序三元组的个数。
但是我们要求的是无序三元组的个数。
显然我们会有算重的部分。
考虑:
1 2 3 型会被算 6 次,
1 2 2型会被算 6 次,实际只需计算3次,需补 3 次;
1 1 1型同样会被算 6 次,实际只需计算1次,需补 5 次;

所以我们需要把多算的加回进去。
容易算出有序二元组的个数,

Ans′′=i=1nni2μ(i)

所以
m=16(Ans+Ans′′3+2)

(由于 1 1 1 只有1 1 1这种情况,又被二元组补了 3 次,所以只需补2次)

这样我们就求出了珠子的种类数 m

Part Ⅱ

接下来我们求有多少个本质不同的项链;
对于这种求本质不同的计数问题,我们通常会想到Burnside引理+Polya计数法
Polya计数法,我们有
对于一个旋转置换i,我们有它的循环个数为 gcd(i,n)
又有,这些循环的起始位置都是相邻的;
为了满足题目的“相邻珠子必须不同”的条件。
必须求出一个 f(k) ,表示 k 满足相邻不同的珠子的环的方案数。


g(k)表示 k 个珠子相邻不同,但首尾必须相同的方案数。
显然

g(i)=f(i2)

又有,

f(i)=f(i1)(m2)+g(i1)(m1)

则,
f(i)=f(i1)(m2)+f(i2)(m1)

这个递推式我们可以利用 矩阵乘法来做,
但由于题目的苛刻时限,使得我们需要进一步探寻通项公式。


对于这一类, f(i)=pf(i1)+qf(i2) 的递推式,
求通项公式都有惯用的套路,以本题为例:

f(i)f(i)+λf(i1)m1=(m2+λ)λλ=1m1λ=1f(i)+f(i1)f(i)=f(i1)(m2)+f(i2)(m1)=f(i1)(m2+λ)+f(i2)(m1)=(m1)(f(i1)+f(i2))=(m1)i3(f(1)+f(2))f(i1)

其中 f(1)=0,f(2)=m(m1)
显然我们可以利用等比数列继续推导,我们可以得到通项公式 (i>2)
h=m1
f(i)=hhi1+hh+1f(2)f(2),hhi1hh+1f(2)+f(2),ii

这样,我们只需使用快速幂就能求 f


于是,我们有

ans=1ni=1nf(gcd(n,i))

很显然,这是超时的。
考虑有多少个 j 满足,gcd(n,j)=i
gcd(n,j)=igcd(ni,ji)=1
φ(ni) 个。
考虑更换主体,则有
ans=1ni|nf(i)φ(ni)

于是就完成了。
另外在, mo|n 的情况下,我们需要特殊处理,因为费马小定理失效了。

代码

#include<iostream>
#include<algorithm>
#include<stdio.h>
#include<math.h>
#include<string.h>
#define ll long long
using namespace std;
const char* fin="ex3298.in";
const char* fout="ex3298.out";
const ll inf=0x7fffffff;
const ll maxn=10000007;
ll t,n,m,i,j,k,ans3,ans2,ans,mo,h,f2,ni;
ll mu[maxn],p[maxn],phi[maxn],c[maxn],d[maxn];
bool bz[maxn];
void pre(){
    ll i,j,k;
    mu[1]=1;
    for (i=2;i<maxn;i++){
        if (!bz[i]){
            mu[i]=-1;
            p[++p[0]]=i;
        }
        for (j=1;j<=p[0];j++){
            k=p[j]*i;
            if (k>=maxn) break;
            bz[k]=true;
            if (i%p[j]==0){
                mu[k]=0;
                break;
            }else mu[k]=-mu[i];
        }
    }
}
ll qmul(ll a,ll b){
    ll c=0,v=1;
    if (a<0 && b>0) a=-a,v=-1;
    else if (b<0 && a>0) v=-1,b=-b;
    while (b){
        if (b&1) c=(a+c)%mo;
        a=(a+a)%mo;
        b>>=1;
    }
    return c*v;
}
ll qpower(ll a,ll b){
    ll c=1;
    while (b){
        if (b&1) c=qmul(c,a);
        a=qmul(a,a);
        b>>=1;
    }
    return c;
}
ll N(ll a){
    return qpower(a,mo-2);
}
void mobius(){
    ll i,j,k;
    ans3=0;
    ans2=0;
    for (i=1;i<=m;i++){
        ans3=(ans3+qmul(qmul((m/i),(m/i)),(m/i))*mu[i])%mo;
        ans2=(ans2+qmul((m/i),(m/i))*mu[i])%mo;
    }
}
ll f(ll v){
    if (v==1) return 0;
    if (v==2) return f2;
    if (v&1) return qmul(qmul(qpower(h,v-1)+h,ni),f2)-f2;
    else return qmul(qmul(qpower(h,v-1)-h,ni),f2)+f2;
}
void dfs(ll v,ll phi,ll l,bool bz,bool yi){
    if (bz) ans=(ans+qmul(phi,f(n/v)))%mo;
    if (d[l]){
        d[l]--;
        dfs(v*c[l],(yi?phi*c[l]:phi*(c[l]-1)),l,true,true);
        d[l]++;
    }
    if (l<c[0]) dfs(v,phi,l+1,false,false);
}
int main(){
    scanf("%lld",&t);
    ll _mo=1e9+7;
    pre();
    while (t--){
        scanf("%lld%lld",&n,&m);
        if (n%_mo==0) mo=_mo*_mo;
        else mo=_mo;
        mobius();
        m=qmul(N(6),ans3+ans2*3+2);
        m=(m+mo)%mo;
        j=(ll)sqrt(n);
        h=m-1,f2=qmul(m,m-1),ni=N(h+1);
        c[0]=0;
        ll nn=n;
        for (i=2;i<=j;i++){
            if (nn%i==0){
                c[++c[0]]=i;
                d[c[0]]=0;
                while (nn%i==0){
                    d[c[0]]++;
                    nn/=i;
                }
            }
        }
        if (nn>1){
            c[++c[0]]=nn;
            d[c[0]]=1;
        }
        ans=0;
        dfs(1,1,1,true,false);
        if (mo==_mo) ans=ans*N(n)%mo;
        else{
            ans/=_mo;
            ans=ans*N(n/_mo)%_mo;
        }
        ans=(ans%_mo+_mo)%_mo;
        printf("%lld\n",ans);
    }
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值