[裴礼文数学分析中的典型问题与方法习题参考解答]4.3.18

设 $\dps{\lim_{x\to 0}\frac{1}{bx-\sin x}\int_0^x \frac{t^2}{\sqrt{a+t^2}}\rd t=1}$, 试求正常数 $a$ 与 $b$. (华中师范大学)

 

解答: 由 $$\beex \bea 1&=\lim_{x\to 0}\frac{1}{bx-\sin x}\int_0^x \frac{t^2}{\sqrt{a+t^2}}\rd t\\ &=\lim_{x\to 0}\frac{b-\cos x} \cdot \frac{x^2}{\sqrt{a+x^2}}\\ &=\lim_{x\to 0}\frac{1}{x^2/2} \cdot \frac{x^2}{\sqrt{a}}\quad\sex{b=1} \eea \eeex$$ 知 $a=4$, $b=1$.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值