裴礼文《数学分析中的典型问题与方法》 P1~31

本文介绍了裴礼文《数学分析中的典型问题与方法》部分内容,涵盖一元函数极限、周期函数、不等式、奇函数偶函数性质、连续性、极限的存在性证明方法如ε-N方法、柯西准则、单调有界原理,以及数列与函数极限的关系。通过例题解析展示了如何运用这些理论解决问题。
摘要由CSDN通过智能技术生成

裴礼文《数学分析中的典型问题与方法》

第1天:1~31

第1章 一元函数极限

  1. 函数
    1. 关于反函数
      1. 只要是有f゜f⁻¹(),结果都为括号里的值
      2. 复合函数的反函数公式
    2. 奇函数、偶函数
      1. 整体的思想和反函数中第1条的思想。
      2. 例1.1.4任意对称区间上的任意函数总可以表示成一个偶函数与一个积函数的和,而且此表示方法唯一Important.
    3. 周期函数
      1. 不是所有周期函数一定存在最小正周期。狄利克雷函数。
      2. 连续的周期函数必有最小正周期。
      3. 例1.1.5周期函数内部存在等差数列的性质。(函数是R上有界实函数)
    4. 几个常用的不等式
      1. 例1.1.7
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值