JDBC学习笔记(7)——事务的隔离级别&批量处理

数据库事务的隔离级别

对于同时运行的多个事务, 当这些事务访问数据库中相同的数据时, 如果没有采取必要的隔离机制, 就会导致各种并发问题:
脏读: 对于两个事务 T1, T2, T1 读取了已经被 T2 更新但还没有被提交的字段. 之后, 若 T2 回滚, T1读取的内容就是临时且无效的.
不可重复读: 对于两个事务 T1, T2, T1 读取了一个字段, 然后 T2 更新了该字段. 之后, T1再次读取同一个字段, 值就不同了.
幻读: 对于两个事务 T1, T2, T1 从一个表中读取了一个字段, 然后 T2 在该表中插入了一些新的行. 之后, 如果 T1 再次读取同一个表, 就会多出几行.
数据库事务的隔离性: 数据库系统必须具有隔离并发运行各个事务的能力, 使它们不会相互影响, 避免各种并发问题. 
一个事务与其他事务隔离的程度称为隔离级别. 数据库规定了多种事务隔离级别, 不同隔离级别对应不同的干扰程度, 隔离级别越高, 数据一致性就越好, 但并发性越弱

数据库提供的 4 种事务隔离级别:

Oracle 支持的 2 种事务隔离级别:READ COMMITED, SERIALIZABLE. Oracle 默认的事务隔离级别为: READ COMMITED 
Mysql 支持 4 中事务隔离级别. Mysql 默认的事务隔离级别为: REPEATABLE READ

具体代码实现:

  1 /**
  2      * ID1 给 ID2 500钱 
  3      * 关于事务:
  4      * 1.如果多个操作,每个使用自己单独的连接,则无法保证事务 例 test1演示
  5      * 2.具体步骤:
  6      *     1) 事务开始前,取消Connection 的默认的自动提交  setAutoCommit(false);
  7      *     2) 如果事务的操作都成功,那么就提交事务
  8      *     3)否则在 try-catch块中回滚
  9      * try {
 10      *      
 11      * conn.setAutoCommit(false);
 12      * ...
 13      *     conn.commit();
 14      * }catch{
 15      * ...
 16      *     conn.rollback();
 17      * }
 18      */
 19     @Test 
 20     public void test2(){
 21         
 22         Connection conn = null;
 23         try {
 24             conn = JDBC_Tools.getConnection();
 25             //System.out.println(conn.getAutoCommit());
 26             
 27             // 1) 取消自动提交
 28             conn.setAutoCommit(false);
 29             
 30             String sql = "UPDATE rent set money = "
 31                     + "money - 500 where id = ?";
 32             
 33             // 2) 如果事务的操作都成功,那么就提交事务
 34             update(conn,sql, 1);
 35             
 36             //int i = 1 / 0; 
 37             
 38             sql = "UPDATE rent set money = "
 39                     + "money + 500 where id = ?";
 40             update(conn,sql, 2);
 41             conn.commit();
 42         } catch (Exception e) {
 43             e.printStackTrace();
 44             
 45             // 3)否则在 try-catch块中回滚
 46             try {
 47                 conn.rollback();
 48             } catch (SQLException e1) {
 49                 e1.printStackTrace();
 50             }
 51             
 52         }finally{
 53             JDBC_Tools.relaseSource(conn, null);
 54         }
 55     }
 56 public static void update(Connection conn,String sql,Object...objs){
 57         
 58         PreparedStatement ps =null;
 59         try {
 60             ps = conn.prepareStatement(sql);
 61             
 62             for(int i = 0;i<objs.length;i++){
 63                 ps.setObject(i+1, objs[i]);
 64             }
 65             ps.executeUpdate();
 66         } catch (Exception e) {
 67             e.printStackTrace();
 68         }finally{
 69             JDBC_Tools.relaseSource(null, ps);
 70         }
 71     }
 72 
 73     @Test
 74     public void test1() {
 75 
 76         String sql = "UPDATE rent set money = "
 77                 + "money - 500 where id = ?";
 78         DAO.update(sql, 1);
 79         
 80         int i = 1 / 0; //一旦出现异常, ID1 减了500,但是 ID2 的钱并没有增加
 81         
 82         sql = "UPDATE rent set money = "
 83                 + "money + 500 where id = ?";
 84         DAO.update(sql, 2);
 85     }设置隔离级别
 86 
 87  public static <E> E getForValue(String sql){
 88         
 89         //1. 得到结果集,该结果只有一行一列
 90         Connection conn = null;
 91         PreparedStatement ps = null;
 92         ResultSet rs = null;
 93         try {
 94             //1. 获取数据库连接
 95             conn = JDBC_Tools.getConnection();//System.out.println(conn.getTransactionIsolation());
 96             conn.setTransactionIsolation(Connection.TRANSACTION_READ_COMMITTED);
 97             //2. 获取 PreparedStatement 对象
 98             ps = conn.prepareStatement(sql);
 99             //2. 取得结果
100             rs = ps.executeQuery();
101             if(rs.next()){
102                 return (E)rs.getObject(1);
103             }
104         }catch(Exception e){
105                 e.printStackTrace();
106         }finally{
107         JDBC_Tools.relaseSource(rs,conn, ps);
108         }
109         return null;
110     }

在 MySql 中设置隔离级别

具体代码实现:

 1 public static <E> E getForValue(String sql){
 2         
 3         //1. 得到结果集,该结果只有一行一列
 4         Connection conn = null;
 5         PreparedStatement ps = null;
 6         ResultSet rs = null;
 7         try {
 8             //1. 获取数据库连接
 9             conn = JDBC_Tools.getConnection();//System.out.println(conn.getTransactionIsolation());
10             conn.setTransactionIsolation(Connection.TRANSACTION_READ_COMMITTED);
11             //2. 获取 PreparedStatement 对象
12             ps = conn.prepareStatement(sql);
13             //2. 取得结果
14             rs = ps.executeQuery();
15             if(rs.next()){
16                 return (E)rs.getObject(1);
17             }
18         }catch(Exception e){
19                 e.printStackTrace();
20         }finally{
21         JDBC_Tools.relaseSource(rs,conn, ps);
22         }
23         return null;
24     }

启动一个 mysql 程序, 就会获得一个单独的数据库连接. 每个数据库连接都有一个全局变量 @@tx_isolation, 表示当前的事务隔离级别. MySQL 默认的隔离级别为 Repeatable Read
查看当前的隔离级别: SELECT @@tx_isolation;
设置当前 mySQL 连接的隔离级别:  
set  transaction isolation level read committed;
设置数据库系统的全局的隔离级别:
set global transaction isolation level read committed;

JDBC批量执行

当需要成批插入或者更新记录时。可以采用Java的批量更新机制,这一机制允许多条语句一次性提交给数据库批量处理。通常情况下比单独提交处理更有效率

/**
     * 向mysql的testJ数据表中插入100000条记录
     * 测试如何插入用时最短
     * 版本一:使用Statement
     */

版本一:我们使用Statement进行事务的操作

 1     @Test
 2     public void testBatchWithStatement(){
 3         Connection connection=null;
 4         Statement statement=null;
 5         String sql;
 6         try {
 7             connection=JDBCTools.getConnection();
 8             //放到一个事务里面
 9             JDBCTools.beginTx(connection);
10             statement=connection.createStatement();
11             long begin=System.currentTimeMillis();
12             for(int i=0;i<100000;i++){
13                 sql="insert into testj values("+
14                 (i+1)+", 'name_"+ i+"', '2016-05-08')";
15                 statement.execute(sql);
16             }
17             long end=System.currentTimeMillis();
18             System.out.println("Time:"+(end-begin));
19             JDBCTools.commit(connection);
20         } catch (Exception e) {
21             e.printStackTrace();
22             JDBCTools.rollback(connection);
23         }finally{
24             JDBCTools.release(null, statement, connection);
25         }
26     }

运行结果:

Time:8991  

结论一:我们使用Statement插入100000条记录用时8991;

版本二:我们使用PreparedStatement进行事务的操作

 1 @Test
 2     public void testBatchWithPreparedStatement() {
 3         Connection connection = null;
 4         PreparedStatement preparedStatement = null;
 5         String sql;
 6         try {
 7             connection = JDBCTools.getConnection();
 8             // 放到一个事务里面
 9             JDBCTools.beginTx(connection);
10             sql = "isnert into testJ values(?,?,?)";
11             preparedStatement = connection.prepareStatement(sql);
12             long begin = System.currentTimeMillis();
13             for (int i = 0; i < 100000; i++) {
14                 preparedStatement.setInt(1, i + 1);
15                 preparedStatement.setString(2, "name_" + i);
16                 preparedStatement.setDate(3,
17                         new Date(new java.util.Date().getTime()));
18                 preparedStatement.execute();
19             }
20             long end = System.currentTimeMillis();
21             System.out.println("Time:" + (end - begin));
22             JDBCTools.commit(connection);
23         } catch (Exception e) {
24             e.printStackTrace();
25             JDBCTools.rollback(connection);
26         } finally {
27             JDBCTools.release(null, preparedStatement, connection);
28         }
29     }

运行结果:
Time:8563

结论2:因为我这里使用的是mysql数据库进行的操作,插入大量数据的时间性能方面的影响不是很大,如果我们换成oracle数据库或其他大型的关系型数据库,事务执行用时相比版本一的1/4;

版本三:批处理插入数据

 1 @Test
 2     public void testBatchWithBatch() {
 3         Connection connection = null;
 4         PreparedStatement preparedStatement = null;
 5         String sql=null;
 6         try {
 7             connection = JDBCTools.getConnection();
 8             // 放到一个事务里面
 9             JDBCTools.beginTx(connection);
10             sql = "insert into testJ values(?,?,?)";
11             preparedStatement = connection.prepareStatement(sql);
12             long begin = System.currentTimeMillis();
13             for (int i = 0; i < 100000; i++) {
14                 preparedStatement.setInt(1, i + 1);
15                 preparedStatement.setString(2, "name_" + i);
16                 preparedStatement.setDate(3,
17                         new Date(new java.util.Date().getTime()));
18                 //积攒SQL
19                 preparedStatement.addBatch();
20                 //当积攒到一定程度,就统一执行,并且清空先前积攒的SQL
21                 if((i+1)%300==0){
22                     //执行
23                     preparedStatement.executeBatch();
24                     //清空
25                     preparedStatement.clearBatch();
26                 }
27             }
28             //如果插入的记录数不是300的整倍数,再执行一次
29             if(100000%300!=0){
30                 //执行
31                 preparedStatement.executeBatch();
32                 //清空
33                 preparedStatement.clearBatch();
34             }
35             long end = System.currentTimeMillis();
36             System.out.println("Time:" + (end - begin));
37             JDBCTools.commit(connection);
38         } catch (Exception e) {
39             e.printStackTrace();
40             JDBCTools.rollback(connection);
41         } finally {
42             JDBCTools.release(null, preparedStatement, connection);
43         }
44     }

运行结果:4587(又提高了,但是还是不明显)
结论三:批处理事务建议采用版本三的方式,再次建议使用oracle数据库做这个插入数据事务的实验,mysql小数据还成,大量的数据也真呵呵了;


本文为博主原创文章,转载请注明出处:http://www.cnblogs.com/ysw-go/
1、本博客的原创原创文章,都是本人平时学习所做的笔记,如有错误,欢迎指正。
2、如有侵犯您的知识产权和版权问题,请通知本人,本人会即时做出处理文章。
3、本博客的目的是知识交流所用,转载自其它博客或网站,作为自己的参考资料的,感谢这些文章的原创人员

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值