对于每个点维护两棵线段树$T1[x],T2[x]$:
$T1[x]$维护$x$子树内,深度在$[l,r]$内的点数,同种颜色有多个的话,保留深度最小的那个。
$T2[x]$维护$x$子树内每种颜色的最小深度。
从底向上合并线段树,先合并$T1$,然后合并$T2$的时候,发现有重复点,那么在$T1$里删去深度大的那个,查询直接在$T1$里区间求和即可。
时间复杂度$O((n+m)\log n)$。
#include<cstdio>
const int N=100010,M=10000000;
int Case,n,m,i,x,y,ans,a[N],f[N],d[N],T1[N],T2[N],tot,l[M],r[M],v[M];
int ins(int x,int a,int b,int c,int p){
int y=++tot;v[y]=v[x]+p;
if(a==b)return y;
int mid=(a+b)>>1;
if(c<=mid)l[y]=ins(l[x],a,mid,c,p),r[y]=r[x];
else l[y]=l[x],r[y]=ins(r[x],mid+1,b,c,p);
return y;
}
int merge1(int x,int y,int a,int b){
if(!x||!y)return x+y;
int z=++tot;
v[z]=v[x]+v[y];
if(a==b)return z;
int mid=(a+b)>>1;
l[z]=merge1(l[x],l[y],a,mid);
r[z]=merge1(r[x],r[y],mid+1,b);
return z;
}
int merge2(int x,int y,int a,int b,int p){
if(!x||!y)return x+y;
int z=++tot;
if(a==b){
if(v[x]<v[y])v[z]=v[x],T1[p]=ins(T1[p],1,n,v[y],-1);
else v[z]=v[y],T1[p]=ins(T1[p],1,n,v[x],-1);
return z;
}
int mid=(a+b)>>1;
l[z]=merge2(l[x],l[y],a,mid,p);
r[z]=merge2(r[x],r[y],mid+1,b,p);
return z;
}
int ask(int x,int a,int b,int d){
if(b<=d)return v[x];
int mid=(a+b)>>1,t=ask(l[x],a,mid,d);
if(d>mid)t+=ask(r[x],mid+1,b,d);
return t;
}
int main(){
scanf("%d",&Case);
while(Case--){
scanf("%d%d",&n,&m);
for(i=1;i<=n;i++)scanf("%d",&a[i]);
for(i=2;i<=n;i++)scanf("%d",&f[i]);
for(i=1;i<=n;i++)d[i]=d[f[i]]+1;
for(i=1;i<=n;i++){
T1[i]=ins(0,1,n,d[i],1);
T2[i]=ins(0,1,n,a[i],d[i]);
}
for(i=n;i>1;i--){
T1[f[i]]=merge1(T1[f[i]],T1[i],1,n);
T2[f[i]]=merge2(T2[f[i]],T2[i],1,n,f[i]);
}
while(m--){
scanf("%d%d",&x,&y);x^=ans,y^=ans;
y+=d[x];
if(y>n)y=n;
printf("%d\n",ans=ask(T1[x],1,n,y));
}
ans=tot=0;
}
return 0;
}