经典DP 洛谷p1880 石子合并

https://www.luogu.org/problemnew/show/P1880 题目

题目描述

在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分。

试设计出1个算法,计算出将N堆石子合并成1堆的最小得分和最大得分.

输入输出格式

输入格式:

 

数据的第1行试正整数N,1≤N≤100,表示有N堆石子.第2行有N个数,分别表示每堆石子的个数.

 

输出格式:

 

输出共2行,第1行为最小得分,第2行为最大得分.

 

输入输出样例

输入样例#1
4
4 5 9 4

 输出样例#1

43
54
卡了我蛮久的。。各种弱智错误。。分享经验,记录自我!
首先 思想
贪心:每次都选取最小的两个进行合并,这样就能保证得到局部最优解,也就是每次合并的值都是最小的
DP:什么是dp呢,在我看来就是通过一种数学统计的方法将小的状态转移到大状态(妙用max,min),事实上这感觉像是一个记忆化的枚举思想(只是感觉像,帮助理解,这是个人的理解,不是真正的定义,
说完了区别,那么dp最重要的来了
状态转移方程
要找到状态转移方程,就要yy出, 这个大答案,可以由什么样的小答案通过题意的操作得到
比如这道题,属于 区间dp
什么意思呢
它的大答案,就是大区间的答案,可以由小区间的答案,通过合并加分的操作进行统计 (对应我的话,应该不难)
有了yy的方向,就要大胆写方程,这道题的方程其实并不难找:
 
dpmax[i][j] = max(dpmax[i][j], dpmax[i][k] + dpmax[k + 1][j] + sum(i, j));
dpmin[i][j] = min(dpmin[i][j], dpmin[i][k] + dpmin[k + 1][j] + sum(i, j));

 

进行解释:区间i,j的最大(最小)值 == 区间i,k的得分的最大(最小)值 + 区间k + 1, j的得分的最大(最小)值 + 本次合并的得分(下面的都用sum)
到这里没人不理解叭

好了,方程出来了,想办法实现,要先搞清楚这循环怎么写
dp[i,j] 很简单,就直接两个for从1到n,从j到n(虽然下面并不是这样写的,不过先别急,这是可以算是一个dp入门教程,但不是入门题啊)
于是就有

 

 

for (int i = 1; i <= n; i++)
for (int j = i; j <= n; j++)
dp[i][j] = max(dp[i][j], ??????);

 

?怎么办,k去哪里了

别急,先想想k是什么,要怎么开始,到哪里结束

emmmm 直接说吧,k,应该是在dp[i][j] 时 从i到j的一个我认为可以叫枚举的(极其不负责)东西叭,反正就是每个区间都要用for进行尝试


于是

 

for (int i = 1; i <= n; i++)
for (int j = i; j <= n; j++)
for (int k = i; k <= j; k++)
dp[i][j] = max(dp[i][j], dp[i][k] + dp[k + 1][j] + sum(i, j));

 

  

但是这里我们会发现一个问题

eg:   dp[1][3] = max(dp[1][3], dp[1][2] + dp[2][3] + sum(1, 3));    当进行到这里时,会发现dp[2][3]好像从来都还没算过,难道后面会算吗。答案是会算,但是,dp[1][[3]已经不会再更新了,所以这样统计答案肯定会出问题

那么是不是方程出了问题,没有啊,很完美啊!!!

确实,非常完美(毕竟是题解)

那么这个问题怎么解决呢?

回到一开始的思想,我们要先算完所有小区间的答案,再去统计大区间的答案对不对?那么是不是从长度为1的区间开始运算?如果到这里都能够理解的话,这题就基本上成功了,但是AC嘛,你懂的


好,那么重新开始

第一层循环用长度,从1开始

然后第二层用要统计的区间的起点,那是不是就不需要终点了,因为终点就等于长度加起点

第三层循环统计i到j区间内拆分的每一种情况

如下:

 

for (int len = 1; len < n; len++)
for (int i = 1; i <= n; i++)
{
    int j = i + len;
    for (int k = i; k <= j; k++)
    dp[i][j] = max(dp[i][j], dp[i][k]+ dp[k + 1][j] + sum(i, j);
}

 

  

非常接近答案了,各位加油

现在大家可以去翻一下最后ac代码,发现dp这个主要的循环基本上一致

然后,回到题面,发现这是个环形的石堆???瞬间脑子里蹦出指针啊,int p啊什么的,但是一激动,一写,啊,好难啊好烦啊

这里就有一个对付环经常用到的思想,把数组复制一遍,扩展成两倍

例如:

A B C D是题目给的堆

复制一遍     A B C D A B C D

如果用这个复制后的数组去dp,会发生什么,你是不是就统计到了D 到 A 或者D 到 B 或者D 到 C 的答案.....

为什么这样是正确的呢,大部分人应该都理解,但是还是想说一下

我们这样想,如果它是环的话,是不是A 与 D就能合并(就是相邻的),是不是就会统计出一个答案,我们需要的其实就是这个答案的数值,不用管什么乱七八糟的想法,要数值大小就ok(有人就会有奇奇怪怪的想法

这个理解了,就去实现,直接看下面的最终代码叭,一看就懂,只要不走神

那么问题又来了,最后答案输出什么呢??dp[1][n] ??

肯定不对,那复制和没复制有什么区别。。

所以就要checkans检查答案。。。),怎么检查?其实很简单,只要把每个长度为len(即n - 1)的dp[i][j]都检查一下,找出最大或者最小的那个,就是答案了

为什么这样又是对的??只因为检查的长的为len

所有的问题都解决了,然后简单优化(什么平行四边形优化都是dalao才会的东西。。)一下叭。

统计sum的优化--前缀和,在dp输入时统计一下前i个石子的和,然后用的时候用前j个的和减掉前i个的和,就是sum(i, j)了

再考虑一下这个问题,复制数组的时候最后一位的复制好像并没有用到?

eg:

A B C D A B C D

统计第一个D到第二个D的答案?不需要啊,长度超了,第一层循环限制了长度,根本访问不到对吧

统计第二个A到第二个D的答案?也不要啊,这跟前面的第一个A到第二个D重复了,其他的其实也有重复,但是,我们需要D到AorBorC,所以其他的不需要删

最后得出,最后一位其实不用复制,没用,浪费(其实这个不算什么优化,只是分享一下某位dalao的一个想法,觉得很有道理)

最后大家完成代码是注意细节,什么max,min的初始化啊,循环的边界啊(我的代码的边界应该不完全恰当懒得检查了,但是不会影响答案,得益于第一层循环的长度限制)

上代码,祝大家acacacacacacac

 

#include <cstdio>
#include <algorithm>
#include <cstring>
#include <iostream>
using namespace std;
const int N = 207;
int n, a[N], s[N], dpmin[N][N], dpmax[N][N], ansmax = -1, ansmin = 9999999;
inline int sum(int x, int y)
{
    return s[y] - s[x - 1];
}
int main(){
    scanf("%d", &n);
    for (int i = 1; i <= n; i++) scanf("%d", &a[i]);
    for (int i = 1; i <= n; i++) a[i + n] = a[i];
    for (int i = 1; i <= n * 2; i++) s[i] = s[i - 1] + a[i]; 
    /* 
    for (int i = 1; i <= n * 2; i++)
        dpmax[i][i] = dpmin[i][i] = 0;
    for (int i = 1; i <= n * 2; i++)
        dpmax[i][i] = dpmin[i][i] = a[i] + a[i + 1];
    */
    for (int len = 1; len < n; len++)
    for (int i = 1; i + len <= 2 * n - 1; i++)
    {
        int j = i + len;
        dpmin[i][j] = 99999999;
        for (int k = i; k < j; k++)
        {
            dpmax[i][j] = max(dpmax[i][j], dpmax[i][k] + dpmax[k + 1][j] + sum(i, j));
            dpmin[i][j] = min(dpmin[i][j], dpmin[i][k] + dpmin[k + 1][j] + sum(i, j));
        }
    }
    
    for (int i = 1; i < n + 1; i++) ansmax = max(ansmax, dpmax[i][i + n - 1]);
    for (int i = 1; i < n + 1; i++) ansmin = min(ansmin, dpmin[i][i + n - 1]);
    
//    for (int i = 1; i < n * 2; i++)
//    for (int j = 1; j < n * 2; j++)
//    {
//        cout << "dpmin" << i << ", " <<  j << " = " << dpmin[i][j] << endl;
//    }
    printf("%d\n%d", ansmin, ansmax);
    return 0;
}

 

感谢阅读

转载于:https://www.cnblogs.com/yunyi5832/p/10776621.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值